
Abstraction of Linear Algebra Data Structures
Google Summer of Code 2020 Proposal for QuTiP

Jake Lishman*

Mentors: Eric Giguère and Alex Pitchford

13th May 2020

The core Qobj class in QuTiP specifically uses a custom scipy-derived
sparse-matrix format for data storage, which allows simulation and optim-
isations on large open quantum systems but causes significant memory and
computational overhead on smaller-dimensioned systems, and the 32-bit
index size can prevent even extremely sparse systems of high numbers of
qubits from being representable. This project will decouple the low-level
data manipulation procedures from the algebraic manipulations performed
within the rest of QuTiP, encapsulating the low-level data manipulation into
a higher-level interface, which will allow multiple storage formats to be
used at the appropriate situations transparently. Overall, QuTiP will be able
to spread its impressive performance to all problem-size domains without
compromising on future maintainability or extensibility as demands for
numerical quantum simulations increase.

1 Technical Overview

The primary data structure in QuTiP is the Qobj class, which represents all linear
operators, and elements of their associated vector and dual spaces. In large systems,
explicitly storing a two-dimensional matrix containing every matrix element in some
basis can quickly become excessively large—in dense form, a 12-qubit operator would
require 256 MiB, a 15-qubit operator 16 GiB, and a 20-qubit system would be completely
unrepresentable by any current computer. Instead, QuTiP has always used a “com-
pressed sparse row” (csr) format for matrix representation, where for each row only
the non-zero elements are stored, along with the column indices for each entry and
the number of non-zero elements in each row. This enables working with very large
sparsely populated Hilbert spaces, even when the basis states to be represented and
time-evolved may have much greater proportions of non-zero elements; an element of
the vector or dual space has memory usage O(2n) compared to O(22n) for an operator
on n qubits.

If most elements of a matrix are zero, then in a dense format a lot of computational
effort in linear operators is wasted multiplying zero by numbers and summing the

*jake@binhbar.com

1

mailto:jake@binhbar.com


results. This particular sparse format is very efficient for calculating matrix left-actions,
such as M̂ |ψ〉, but less efficient when being acted upon from the left where column-
lookup overheads can begin to cause performance to drop below traditional dense
matrix representations (assuming the matrix can fit in memory). At small system
sizes too where the proportion of non-zero elements is high, the need to store column
indices and non-zero counts causes significant computational and storage overheads,
generally making sparse matrices far less desirable in these regimes. In QuTiP this is
already a known problem, discussed in detail in #437, with further issues raised in
#818, #831, #845 and #853, amongst others, where a range of memory and calculation
time concerns have been identified. In the qutip.control module, the Qobj class is
bypassed in order to use a dense matrix representation, since these control problems
typically concern smaller, controllable systems, but this is undesirable as it causes a
very high-level portion of the interface to have to address low-level data manipulations.
Several parts of QuTiP now directly manipulate the internal csr-formatted data stored
in Qobj for speed reasons, essentially locking-in the format, making the previous issues
difficult to solve.

This project aims to overhaul all access to the QuTiP data internals, forcing them to
be done through a well defined interface, and removing direct access. It will allow
Qobj to use any representation which implements the interface, allowing the user or
internal functions to switch between them as necessary to ensure high performance in
all problem sizes. Aside from the improved calculation abilities, this will also simplify
maintenance and debugging, since it will force a strong separation of concerns between
different layers of the package.

2 Timeline

Project work officially starts on the 1st of June, and numFOCUS require “regular
blog posts” to track progress throughout the three months. The breakdown here is
approximate and (hopefully) achievable in scope, as with such a far-reaching proposal
it is difficult to anticipate where the major difficulties will lie.

Before official start date, or community bonding

• Continue small contributions to QuTiP development.

• Familiarise myself more with the QobjEvo internals and Cython intricacies.

1st of June until 21st of June (three weeks)

• Investigate the extended effects of any abstraction.

• Discuss, specify and document the necessary interface for any underlying data
representation in consultation with the core team.

• Identify the main obstacles to separation of the data storage and linear-algebraic-
manipulation layers of the package stack.

22nd of June until 19th of July (four weeks)

2

https://www.github.com/qutip/qutip/issues/437
https://www.github.com/qutip/qutip/issues/818
https://www.github.com/qutip/qutip/issues/831
https://www.github.com/qutip/qutip/issues/845
https://www.github.com/qutip/qutip/issues/853


• Write profiling tests of the current code to allow tracking of the resource
consumption in actual use as the core objects evolve. These would not be part
of the default test suite, as they would by necessity need to take a reasonable
amount of time to run.

• Implement the separation of concerns of the data storage, without adding in
additional storage methods or new functionality—this step is purely about
ensuring that all existing code is moved to the new interface without significant
degradation of performance.

• Attempt to isolate uses of Cython, and, if reasonable in the time frame,
provide an alternative either manually with numba or Pythran, or general with
transonic.

19th of July until 2nd of August (two weeks)

• Add the dense numpy.ndarray as an allowable data store. This is the primary
goal of the project.

• Verify that QobjEvo in particular can use both sparse and dense matrices trans-
parently.

• Make any necessary changes to the data-storage interface specification with the
new knowledge gained.

• Add new tests for this new data abstraction.

3rd of August until 23rd of August (two weeks)

• Find suitable heuristics and implement matrix conversions in places in the
codebase where a change in representation could result in an increase in
performance.

• Add a 64-bit int version of the sparse matrix format to allow representation of
massive problem sizes.

• Ensure all new matrix representations are documented and tested.

24th of August until 31st of August (final week)

• Final check over documentation and tests.

• Write final report, project summary and evaluation.

3 Future Extensions

The general concept of abstraction of quantum objects leads to some rather interesting
prospects for enhancement of QuTiP’s feature set. The most immediate would be the
possibility of reducing the amount of Cython code that is absolutely necessary to the
functioning of QuTiP, which is a fairly large source of the complexity in maintaining
and distributing QuTiP effectively.

3



Looking at a much larger picture, however, and far beyond the scope of this proposal,
one could imagine that a complete abstraction of the underlying data representation
could pave the way to full symbolic representation and manipulation of quantum
objects. This is already beginning to be brought to bear within QuTiP—the addition
of QobjEvo allows the representation of general time-dependent objects with time left
unspecified. It would be interesting to consider the unification of Qobj and QobjEvo
under this idea of abstraction of storage formats, with a possible extension being
to allow the symbolic representation of operators and spaces whose truncation is
not yet specified. To allow these to seamlessly inter-operate, and remove the need
for quadratically scaling numbers of if isinstance(other, QobjVariant9) blocks in
interaction code, we would want to unify the object hierarchy, most likely under two or
three abstract interfaces (rather than instantiatiable objects) and rely on the interfaces’
interactions with each other, similarly to how we intend to work with the multiple data
representations in this project.

4 My Experience

I am a final-year PhD student working on optimal control of trapped ions under Dr.
Florian Mintert at Imperial College London, often doing numerical simulations in
Python using QuTiP. I have been able to open-source several parts of my work in
particular the highly-optimised Floquet formalism solver I worked on (section 4.3), and
I have already made several commits to the QuTiP master branch. I cannot, however,
immediately share my most recent PhD code because there are intellectual property
issues that I am not certain about. Other more nebulous bits of my personal code
without these restrictions are visible on my GitHub page1.

4.1 Prior QuTiP Contributions

I have four pull requests merged to the QuTiP master branch already:

#1159: Implicit tensor product for qeye, qzero and basis
Refactored the code paths for qeye([2,2]) and qzero where a tensor-product
state is created so that nested lists were not flattened. Added a similar ability
to create direct tensor products in basis, as in basis([2,2], [0,1]) creating the
qubit state |01〉. Closed (or should be closed!) #363.

#1161: Remove duplicated test runners
Fixed a corrupted merge resulting in both nose and pytest test runners being
present in testing.py. Also converted test qobj.py to a rough pytest style, due
to a nose-specific test case. Fixed #1158.

#1164: Move tests to pytest
Began the work of converting the large test suite to the more modern pytest
framework.

1https://www.github.com/jakelishman

4

https://www.github.com/jakelishman
https://www.github.com/qutip/qutip/pull/1159
https://www.github.com/qutip/qutip/issues/363
https://www.github.com/qutip/qutip/pull/1161
https://www.github.com/qutip/qutip/issues/1158
https://www.github.com/qutip/qutip/pull/1164
https://www.github.com/jakelishman


#1206: Deprecate qutip.graph functions
Marked the qutip.graph module as deprecated, pending a move to convert it to
the scipy versions to simplify the codebase.

I also have two more that are currently pending, and am actively contributing to:

#1181: Convert tests to pytest
Continues the work of #1164, but much more in depth as I have learnt more about
pytest and have converted more files.

#1194: Make LATEX image conversion more resilient
Fixes several bugs found in the generation of images of quantum circuits, includ-
ing making it play nicely with IPython when optional dependencies are missing.
Fixes #1179 and #1185.

4.2 Instrument Control

During my undergraduate master’s degree in physics at the University of Warwick
and for three months immediately after graduation I worked as a paid software
engineer writing instrument control software in F# for the lab of Dr. Gavin Morley
with two PhD students. Working in this team is where I really learnt how to use
git properly, and the functional style we wrote in made me a more well-rounded
programmer, having originally learned pure C. A lot of that code is available on the
Warwick EPR Github pages2, especially the Endorphin.Instrument.Keysight.N5172B
and Endorphin.Core modules, though I was active in several more during the summers
of 2015 and 2016.

4.3 Numerical Floquet Solver

At the very beginning of my PhD I inherited a previous Master’s student’s Floquet
calculation code3, which is now published under the Imperial Controlled Quantum
Dynamics group on GitHub. I was able to heavily optimise this, reducing calculation
times by several orders of magnitude for large systems, in part by implementing a
custom column sparse matrix format that was accessible by numba in 57af1114 (I’m also
especially proud of several other commits around that time, too!). Very notably for this
project, I also implemented a form of abstraction of the input data types in 5dff87e5,
although this was not as far-reaching as the changes proposed here.

2https://www.github.com/WarwickEPR
3https://github.com/ImperialCQD/floq
4https://github.com/ImperialCQD/floq/commit/57af111a5af768ad184b1278a0428071af6482a5
5https://github.com/ImperialCQD/floq/commit/5dff87e427c01b09ca0b3cb5e4ca25c64c51294f

5

https://www.github.com/qutip/qutip/pull/1206
https://www.github.com/qutip/qutip/pull/1181
https://www.github.com/qutip/qutip/pull/1164
https://www.github.com/qutip/qutip/pull/1194
https://www.github.com/qutip/qutip/pull/1179
https://www.github.com/qutip/qutip/issues/1185
https://www.github.com/WarwickEPR
https://www.github.com/WarwickEPR/Endorphin.Instrument.Keysight.N5172B
https://www.github.com/WarwickEPR/Endorphin.Core
https://github.com/ImperialCQD/floq
https://github.com/ImperialCQD/floq
https://github.com/ImperialCQD/floq/commit/57af111a5af768ad184b1278a0428071af6482a5
https://github.com/ImperialCQD/floq/commit/5dff87e427c01b09ca0b3cb5e4ca25c64c51294f
https://www.github.com/WarwickEPR
https://github.com/ImperialCQD/floq
https://github.com/ImperialCQD/floq/commit/57af111a5af768ad184b1278a0428071af6482a5
https://github.com/ImperialCQD/floq/commit/5dff87e427c01b09ca0b3cb5e4ca25c64c51294f


4.4 Symbolic Linear Algebra

Most recently I have been working on optimised symbolic calculations with linear
operators in Python as part of a recent arXiv paper6. We needed to perform Baker–
Campbell–Hausdorff-type expansions with operator power series in a coupling para-
meter, and keep track of all coefficients and powers through several orders of the
expansion, algebraically simplifying all sums to keep the memory and time usage man-
ageable. Using this, we were able to calculate Magnus expansions to ninth order and
perform fully analytic propagator expansions with what would have been hundreds of
thousands of functional terms without simplification in pure Python.

5 Why This Project?

I have used QuTiP a lot throughout my PhD, and I started contributing to the devel-
opment of it two months ago as a way of giving back. I am particularly interested in
optimising the low-level components of the package without compromising end-user
experience, and I want to gain more experience in more advanced software architecture
and team development. Working on the QuTiP internals with this project satisfies all
of these, and could be a valuable contribution to the project just by nature of having
somebody be free enough to make the far-reaching changes in a relatively short amount
of calendar time, so that the inevitable merge at the end is as painless as possible.

6https://www.arxiv.org/abs/2003.11718

6

https://www.arxiv.org/abs/2003.11718
https://www.arxiv.org/abs/2003.11718

	Technical Overview
	Timeline
	Future Extensions
	My Experience
	Prior QuTiP Contributions
	Instrument Control
	Numerical Floquet Solver
	Symbolic Linear Algebra

	Why This Project?

