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Abstract

Both entanglement and coherence are key resources for all applications of quantum
technologies, from thewell-known efforts to create a quantum computer, to research
into thermodynamic work extraction. Trapped ions are one of the leading platforms
for scalable quantum computing, as the site of many of the earliest quantum logic
gates, and now boast the current highest-fidelity gates and longest coherence times
of their qubits. This thesis presents three strands of work surrounding the creation,
manipulation and verification of coherence and entanglement in trapped ions.
Coherence is classified into differing ranks, to better represent the structure of

multiple-component superpositions. A certifier for these different levels, analog-
ous to an entanglement witness, is derived from a one-dimensional interference
pattern in a generalisation of the Ramsey scheme. This metric cannot produce
false positives for high-order coherence, even when the coherence basis cannot
be measured directly. It requires significantly fewer experimental resources than
alternate schemes that have been proposed, and a demonstration in the motional
mode of a single trapped ion is presented, verifying that 3-coherence was created.

The Mølmer–Sørensen Bell-state-creation gate in trapped ions is then examined,
and its principal sources of frequency errors investigated. A multi-tone extension
of the gate is presented, which is numerically optimised to make its entanglement
generation robust against errors in the qubit and driving frequencies. This analysis
produces a gate that is specifically optimised for the estimated error distributions
of the target experiment.
Finally, the same Mølmer–Sørensen gate is taken outside the weak-coupling

approximation inwhich it has hitherto been confined. A newmethod of perturbative
expansion is introduced and used to calculate functional constraints on the applied
driving fields that can be satisfied to cancel unwanted non-linear terms from the
dynamics order-by-order. This new strategy removes a previously fundamental
limitation on the speed of trapped-ion entangling gates, and severely relaxes the
cooling requirements on the motional modes.
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Chapter 1

Introduction

The last decade has seen the beginnings of large-scale commercialisation of quantum
computing, although practical advantages over classical computers still hover out of
reach. The field arose forty years ago out of discussions about quantum simulations
of nature39, and possible quantum descriptions of Turing machines9,10. Within a
decade, this developed into prospective models of a universal quantum computer 32

and the first problem for which quantum systems offered an improvement in com-
putational complexity over the best classical solution33. Non-academic interest
in quantum information processing intensified after the publication of Shor’s al-
gorithm in 1994112, which demonstrated that the integer-factorisation problem, a
bedrock of modern asymmetric cryptography, could be solved in a time polynomial
in the number of bits rather than the sub-exponential asymptotic scaling of the
most efficient known classical approach.
For time being, our bank transactions and text messages remain safe. Since the

turn of the millennium, several groups have successfully determined that 15 = 3× 5
using various quantum systems67,74,126, and in the last year, one group found that
21 = 3 × 7 on a commercial superconducting-qubit ibm machine113. Of course, this
is a somewhat facetious point; the immediate goals are to show that the methods
are viable in the current noisy intermediate-scale regimes of quantum devices.
Still, though, five-bit integers are a far cry from the 4096-bit products that have
become the standard for rsa public-key systems. Current implementations are
simply unable to fabricate or control millions of qubits at the operational tolerances
required for these applications. Much of this is due to errors in the logical operations.
While modern cpus are—cosmic rays aside—essentially error-free in actual usage,
this is not true of their quantum counterparts.
The achievable interaction fidelities have steadily improved since the first two-

qubit logic gate in trapped ions83. The current state of the art remains in this
same setting, with two-qubit gates now recorded at close to 99.99% fidelity4,40.
This is not the only medium for quantum computing, however. Early quantum
algorithms were demonstrated in nuclear magnetic resonance systems24,62, and
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Chapter 1 Introduction

in the intervening years, logic gates have been demonstrated in superconducting
qubits135, linear photonic systems65, neutral atoms15, and other systems.
The requirements for a scalable quantum information processor are generally

agreed upon35. The five operations are: a set of well defined, addressable qubits; a
reliable method to prepare known quantum states; decoherence times much longer
than gate operations; access to a universal set of quantum logic gates; and a method
of reading out the state of a qubit in some basis. While modern gate fidelities
are high, decoherence processes pose limitations on how much further they can
realistically be pushed on a large scale. With known quantum algorithms requiring
many thousands or millions of gates, even the current state-of-the-art infidelities
of around one part in ten thousand are insufficient. Instead, theoretical work into
quantum error correction has shown that fault-tolerant quantum computation can
still be achieved with fidelities on the order of 99–99.9%36,100. This is effectively
reducing requirements on fidelities by increasing the number of qubits needed,
elevating further the importance of scalability. The new infidelity goals are within
reach for small numbers of qubits, but there are massive hurdles to overcome in
experimental control and qubit isolation as register sizes increase.
Of the candidates, trapped-ion and superconducting qubits currently seem the

most likely to successfully scale in the near term. Both of these have serious com-
mercial backing: trapped ions by Honeywell93 and IonQ14, and superconducting
qubits by Google3 and ibm141. Trapped ions have the better fidelities and state life-
times relative to their gate speeds, but the absolute gate speeds of superconducting
qubits are orders of magnitude faster and their fabrication can build on the back of
existing silicon technology. Both remain highly susceptible to many decoherence
processes from the environment. This work focusses entirely on trapped ions,
aiming to move the technology closer to satisfying all of the quantum-computing
requirements completely.

1.1 Outline

The second part of this work contains three main areas of novel research, all linked
by the goal of enablingmore robust coherence and entanglement generation in noisy
trapped-ion systems, key ingredients of creating a large-scale quantum information
processor. These are not presented in chronological order, but instead progress
from dealing with single ions, then to two-ion entanglement in a weakly coupled
regime, and finish on a method for implementing two-qubit gates in non-linear
regimes of strongly coupled interactions with multiple hot motional modes. All
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Chapter 1 Introduction

three of these projects led to publications29,72,104, with chapters 4 and 6 both being
collaborative efforts with other researchers. Contributions from my co-authors are
clearly stated at the beginning of each chapter, and I was heavily involved with all
of the work that I have described in the rest of this thesis.
As with any PhD thesis in modern physics, this work stands on the shoulders

of programmatic giants. The subsequent text will not delve into the minutiae of
any code, but I would be remiss were I not to mention those without whom I could
never have produced this thesis. All the results of chapters 4 to 6 used significant
computational resources to achieve, provided by the Research Computing Service
at Imperial College London50. The majority of the programming here was built on
the NumPy47 and SciPy128 packages. The library QuTiP61 was used for integration
of arbitrary time-dependent systems, a project of which I became a principal
contributor and then maintainer over the course of my degree.

Chapter 4 describes a generalisation of Ramsey-like interference-pattern exper-
iments to robustly certify the presence of multilevel coherence in the motional
state of a single trapped ion. This can never return false positives, despite the
motional mode being inaccessible to measurement. In conjunction with the experi-
mental group at Imperial, we implemented this scheme in a real-world system, and
unambiguously verified that we had created three-level coherence.

My first research project is presented in chapter 5, where we perform numerical
optimisations of a multitone extension to the Mølmer–Sørensen entangling gate,
to make it resilient against fluctuations and miscalibrations of the individual qubit
frequencies. Our simulations indicate potential order-of-magnitude improvements
in the infidelity of the gate at the error-correction threshold, and the methods used
can efficiently handle any calibrated error model.
Finally, chapter 6 describes a systematic method for moving trapped-ion gates

outside of the weakly coupled, linear regime they have hitherto been confined
within. This involves driving higher-order motional transitions with very simple
control fields that any current ion-trap group could easily implement with their
existing hardware. We illustrate a perturbative expansion to determine the gate
dynamics order-by-order of the coupling strength for a general non-linear interac-
tion, and derive a series of functional constraints on the driving profiles that, when
satisfied, allow the gate to be decoupled from the motion to ever higher orders. We
show two explicit solutions to these, improving the infidelity scaling of the gate
by several orders. This reduces the previously fundamental limitations on gate
fidelity by a factor of 2000 with the simplest extension, and allows gates to operate
without expensive sideband cooling cycles. For an outlook, we sketch out potential

12



Chapter 1 Introduction

procedures for cancelling non-linearities from spectating motional modes and the
steps needed to incorporate existing dynamical-decoupling or robust-gate schemes
into this new framework.

The rest of the first part of this work is devoted to the other introductory material
needed for the new research. This includes the basic definitions and mathematical
techniques of quantum mechanics and information in chapter 2, and then the
relevant physics of trapped ions in chapter 3.
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Chapter 2

Quantum Information

The mathematical language of quantum mechanics is physicists’ dialect of linear
algebra. We are exclusively concerned with complex Hilbert spaces: vector spaces
equippedwith an inner product. This chapter is primarily intended as a reference for
the notation and terminology that will be used in the rest of the thesis. A far more
complete introduction to quantum mechanics, quantum information theory, and
their mathematical backing may be found in the venerable Nielsen and Chuang 88 .

2.1 Basic definitions

Pure quantum states are elements of a vector space V over the field of complex
numbers ℂ. We write a state in bra-ket notation as a ket |𝜓 ⟩, where𝜓 is an identifier
rather than necessarily having any mathematical properties. As would be expected
from the properties of a vector space, such systems can be in linear superpositions
of states 𝑎 |𝜓 ⟩ + 𝑏 |𝜙⟩, where 𝑎 and 𝑏 are complex numbers. These superpositions
are the foundation of quantum coherence, which is responsible for many of the
counterintuitive predictions of quantum mechanics in which a state interferes with
itself53.

An operator �̂� within the same Hilbert space is a mapping V → V , which takes
one state to another by acting on it as �̂�|𝜓 ⟩ = |𝜙⟩. This thesis will not stray beyond
linear operators, so �̂�

(︁
𝑎 |𝜓 ⟩ +𝑏 |𝜙⟩)︁ = 𝑎�̂�|𝜓 ⟩ +𝑏�̂�|𝜙⟩ for all complex scalars 𝑎 and 𝑏,

and all states |𝜓 ⟩ and |𝜙⟩. Operators do not, in general, commute—that is �̂��̂� ≠ �̂��̂�

for most �̂� and �̂�. The commutator, defining the difference between the two, is
written [�̂�, �̂�] = �̂��̂� − �̂��̂�. Functions of operators are defined by means of their
power series. For example, the exponential of an operator can be written as

exp
(︁
�̂�
)︁
= 1 + �̂� + 1

2!�̂�
2 + 1

3!�̂�
3 + · · · , (2.1)

where loose scalars are implicitly multiplied by the suitable identity operator.
The inner product between two states is written as ⟨𝜙 |𝜓 ⟩, where in contrast
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Chapter 2 Quantum Information

to mathematical notation, the operation is linear in |𝜓 ⟩ and conjugate-linear in
|𝜙⟩. By the time we reach the new results in this thesis, we will be dealing solely
with normalised states, such that ⟨𝜓 |𝜓 ⟩ = 1. The inner product of a state with
the output of an operator acting on a state is written ⟨𝜙 |�̂�|𝜓 ⟩, and is colloquially
called a matrix element by analogy to the matrix representation of linear algebra.
In practice we rarely write states or operators in column-vector or matrix form,
and we will often deal with infinite-dimensioned Hilbert spaces where this would
be impractical at best.
The object ⟨𝜓 | is named a bra and is an element of the dual of the vector space.

Functionally, it is a linear mapping V → ℂ taking elements of the vector space to
the complex field, and so can apply to states and cannot commute through them.
The object |𝜓 ⟩⟨𝜙 | is therefore an operator in its own right. Operators can also act
on bras, with the definition

(︁⟨𝜙 |�̂�)︁ |𝜓 ⟩ = ⟨𝜙 | (︁�̂�|𝜓 ⟩)︁ = ⟨𝜙 |�̂�|𝜓 ⟩ for all |𝜓 ⟩ and |𝜙⟩.
The adjoint of an operator �̂�† is the operator such that the inner product of �̂�|𝜓 ⟩

on |𝜙⟩ is equal to inner product of |𝜓 ⟩ on �̂�† |𝜙⟩. For convenience, although it is not
strictly mathematically accurate to do so, in bra-ket notation we define ⟨𝜓 | = (︁|𝜓 ⟩)︁†.
This is a deliberate choice to simplify the inner-product notation; it is irrelevant
to the physics whether ⟨𝜙 |�̂�|𝜓 ⟩ came from

(︁|𝜙⟩)︁† (︁�̂�|𝜓 ⟩)︁ or (︁
�̂�
† |𝜙⟩)︁† |𝜓 ⟩. Hermitian

(self-adjoint) operators �̂� = �̂�
† are especially important in quantum mechanics,

because all physical observables must be of this form. Hermitian operators have
real eigenvalues, and their eigenstates form complete orthonormal bases of the
respective Hilbert space. Throughout this thesis, the notation �̂�+H.c. means �̂�+�̂�†,
with H.c. standing for Hermitian conjugate.

A unitary operator is an operator Û such that Û Û†
= Û†Û = 1, i.e. an operator

whose adjoint is its inverse. These operators are inner-product-preserving, and
consequently all valid evolutions taking one physical pure state to another are
unitary, including quantum logic gates. All unitary operators can be written as
Û = exp(𝑖�̂� ) for some Hermitian operator �̂� . Writing �̂� in terms of its eigenvalue
decomposition �̂� =

∑︁
𝑗 𝜆𝑗 |𝜆𝑗 ⟩⟨𝜆𝑗 | for orthonormal |𝜆𝑖⟩, it is clear that that eigenval-

ues of this Û are 𝑒𝑖𝜆𝑗 , which have unity magnitude. This form of operator frequently
appears when describing evolution of a quantum system.

It is often the case that a quantum-mechanical system is subject to some classical
interaction that reduces the quantum coherence and introduces in its place some
classical probability of being in a particular state. These states are represented by a
density operator �̂� as

�̂� =
∑︂
𝑗

𝑝𝑗 |𝜓𝑗 ⟩⟨𝜓𝑗 |, (2.2)
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Chapter 2 Quantum Information

where the {𝑝𝑗 } are classical probabilities that sum to one. The density-operator
representation of a pure state has exactly one nonzero probability, and the cor-
responding |𝜓𝑗 ⟩ is the vector representation of the pure state. If an operator were
applied to the state such that |𝜓𝑗 ⟩ → �̂�|𝜓𝑗 ⟩, the new density operator would be
�̂�|𝜓𝑗 ⟩⟨𝜓𝑗 |�̂�†, illustrating that density operators evolve as �̂� → �̂��̂��̂�

†.
A quantum system can also comprise more than one separate physical system.

Formally, the joint space is the tensor product of the component vector spaces
V1 ⊗ V2, which is itself a vector space. We will typically write kets in a joint space
by catenating the labels, such as |𝑔⟩ ⊗ |𝑔⟩ = |𝑔𝑔⟩, or by juxtaposition, such as(︁|𝑔⟩ + |𝑒⟩)︁ (︁ |𝑔⟩ + |𝑒⟩)︁ = |𝑔𝑔⟩ + |𝑔𝑒⟩ + |𝑒𝑔⟩ + |𝑒𝑒⟩. Operators on a joint space will
similarly be juxtaposed, and if an operator is missing for a particular subspace, it
is implicitly the identity. In cases where there could be ambiguity between joint
operators and composed operator action, we will use the tensor-product symbol ⊗
and leave composition as-is.
All states in a tensor-product space can be written as |𝜓 ⟩ =

∑︁
𝑗,𝑘 𝑐𝑗,𝑘 | 𝑗⟩ ⊗ |𝑘⟩,

where the sum is over arbitrary orthonormal bases of the two subspaces. This
decomposition is not unique; it is dependent on the bases chosen. A state is said
to be entangled when there must be more than one nonzero element in the sum,
regardless of its magnitude, while unentangled states are called separable. This can
be extended to a hierarchical structure, accounting for the number of entangled
subsystems123, and there is a great body of literature considering the verification,
distillation and use of entanglement as a resource22,37,56.

A very similar approach allows us to define multilevel coherence, which is defined
with respect to a particular choice of basis, rather than the fairly natural separation
of physical systems used in entanglement. Given a basis {| 𝑗⟩}, a pure state is called
𝑘-coherent if at least 𝑘 basis vectors have nonzero overlap with it. For a mixed state
�̂� to be 𝑘-coherent, all its possible decompositions must contain at least one pure
state that is 𝑘-coherent or greater. Precisely determining the level of coherence of
a large system is nontrivial, even if the density operator is known exactly. This is
the focus of chapter 4.

2.2 Qubits and harmonic-oscillator systems

Only two types of quantum system will be used in this thesis: qubits and quantum
harmonic oscillators. We will briefly cover the notation used to work with these.
The name qubit is used to describe a physical object whose states reside in a

two-dimensional complex Hilbert space, for example a two-level ion. We will label
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the two basis states |𝑔⟩ and |𝑒⟩ (for ground and excited), to reduce confusion with
the harmonic oscillator number states. In this form, the Pauli operators are

�̂�𝑥 = |𝑒⟩⟨𝑔 | + |𝑔⟩⟨𝑒 |, �̂�𝑦 = −𝑖 |𝑒⟩⟨𝑔 | + 𝑖 |𝑔⟩⟨𝑒 |, and �̂�𝑧 = |𝑒⟩⟨𝑒 | − |𝑔⟩⟨𝑔 |, (2.3)

where �̂�𝑧 is related to the free evolution of the system, while �̂�𝑥 and �̂�𝑦 are related
to transitions between the two states. The Pauli operators are both Hermitian and
unitary, so each of their squares is simply the identity operator. The multiplication
of distinct Pauli operators satisfies �̂�𝑎�̂�𝑏 = 𝑖𝜀𝑎𝑏𝑐�̂�𝑐 for 𝑎, 𝑏 and 𝑐 in {𝑥, 𝑦, 𝑧}, where
𝜀 is the Levi-Civita symbol with parity defined by 𝜀𝑥𝑦𝑧 = 1. When dealing with
coupled systems, we will also use two related operators

�̂�+ = |𝑒⟩⟨𝑔 | = 1
2 (�̂�𝑥 + 𝑖�̂�𝑦) and �̂�− = |𝑔⟩⟨𝑒 | = 1

2 (�̂�𝑥 − 𝑖�̂�𝑦). (2.4)

Taken individually these are non-Hermitian and non-unitary, representing the
separate excitation and de-excitation processes, and will be useful in rotating-wave
approximations.
The eigensystem of a quantised harmonic oscillator is spanned by the Fock

or number basis. We label the states with an integer 𝑛 as |𝑛⟩, where |0⟩ is the
ground state, and so on. The principal operators when working with these states
are the annihilation �̂� and creation �̂�† operators, also called ladder operators, that
respectively remove and add a phonon of motion to the system by the relations

�̂� |𝑛⟩ = √
𝑛 |𝑛−1⟩ and �̂�† |𝑛⟩ =

√
𝑛 + 1|𝑛+1⟩. (2.5)

Note that �̂� |0⟩ = 0; the state cannot be lowered beyond the ground state. The two
operators do not commute, but satisfy [�̂�, �̂�†] = 1. The Hermitian operator �̂�†�̂� is
named the number operator, as it clearly follows from eq. (2.5) that �̂�†�̂� |𝑛⟩ = 𝑛 |𝑛⟩.

Physically, the two ladder operators arise from the diagonalisation of the quantum
harmonic oscillator Hamiltonian, and are defined by �̂� = �̂� − 𝑖�̂� for nondimension-
alised position �̂� and momentum �̂� . Following on, the displacement operator

D̂(𝛼) = exp
(︁
𝛼�̂�† − 𝛼∗�̂�

)︁
(2.6)

displaces a state by an amount 𝛼 in phase space, where the real and imaginary
components correspond to the positional and motional displacements respectively.
This is unitary, but not Hermitian—instead, D̂†(𝛼) = D̂(−𝛼), which is geometrically
intuitive. We will frequently use phase space to make qualitative interpretations
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of ion-trap gate operations, since it encodes the first orders of the behaviour of
motional modes.

2.3 Measurements

Manipulation of quantum systems is all very well, but we cannot gain any informa-
tion until we perform a measurement. These observations are non-unitary, and in
general collapse a state down to subspaces associated with each possible outcome,
destroying coherence. The majority of possible measurements of quantum systems
are projective, where the possible outcomes for a particular measurement are each
defined by a positive-semidefinite Hermitian operator {�̂� 𝑗 } such that �̂� 𝑗 �̂�𝑘 = 𝛿𝑗𝑘 �̂� 𝑗 ,
and ∑︁

𝑗 �̂� 𝑗 = 1. These requirements imply that the �̂� 𝑗 partition the total Hilbert
space into a collection of orthogonal subspaces, and each projector can be written
�̂� 𝑗 =

∑︁
𝑘
|𝜓 ( 𝑗)

𝑘
⟩⟨𝜓 ( 𝑗)

𝑘
|, where the states with equal 𝑗 are an orthonormal basis of the

relevant subspace. The rank of such an orthogonal projector is the number of states
required in its sum representation.
Real quantum systems can often perform only one type of measurement: pro-

jection onto some logical basis. There is typically one natural basis that encodes a
count or choice between physical items, so the associated measurement is simply
observing which level a system is in, or how many photons or phonons exist. For
qubits, this logical basis is typically chosen to coincide with the Pauli 𝑍 basis, and
the two measurement outcomes are associated with the operators |𝑔⟩⟨𝑔 | and |𝑒⟩⟨𝑒 |.
When investigating more information-theoretic results, however, it is appropriate
to consider the more general form of measurement.
The operators associated with a measurement’s outcomes being Hermitian

positive-semidefinite and summing to the identity operator is analogous to a clas-
sical probability distribution. This is axiomatic. The requirement that the separate
measurement outcomes are orthogonal, however, is not. Relaxing this takes us
to the most general case, that of a positive operator-value measure (povm). Such
measures comprise a set of operators {�̂�𝑗 } that are positive semi-definite Hermitian
and sum to the identity. Notably, this allows a degree of overlap between the
measurement operators. Unlike for projective measurements, performing a meas-
urement in a povm and obtaining the outcome associated with �̂�1 does not preclude
a measurement on the resulting state returning �̂�2. This can be useful in situations
where two states are not perfectly distinguishable, but one wishes to know with
certainty which has been received at the cost of sometimes obtaining an incon-
clusive result. Taking a povm comprising of scaled projectors onto the two states
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orthogonal to the targets and the remainder operator needed for completeness, a
result of either of the first two operators unambiguously determines the input state,
while the latter gives no information. We will use this formalism later when dealing
with a similar problem: unambiguously validating the presence of coherence in a
system, without risk of false negatives.

2.4 Time evolution

All quantum mechanical systems obey the Schrödinger equation

𝑖ℏ𝜕𝑡 |𝜓 ⟩ = Ĥ|𝜓 ⟩, (2.7)

where 𝜕𝑡 is the partial derivative with respect to time and ℏ ≈ 1.05 × 10−34 J s is
the reduced Planck constant. The Hermitian operator Ĥ is the Hamiltonian of
the system, which corresponds to its total energy and determines its dynamics.
Equivalently, we can define a unitary operator Û that represents the time evolution
by the solution of 𝑖ℏ𝜕𝑡 Û = ĤÛ , which allows us to write |𝜓 (𝑡)⟩ = Û (𝑡) |𝜓 (0)⟩. As
with any other operator, mixed states evolve as Û �̂�Û† in a closed system.

If the Hamiltonian commutes with itself at different times, i.e. [Ĥ(𝑡1), Ĥ(𝑡2)] = 0
for all times 𝑡1 and 𝑡2, the time-evolution operator is explicitly given by

Û (𝑡) = exp
(︃
− 𝑖

ℏ

∫ 𝑡

0
d𝑡 ′ Ĥ(𝑡 ′)

)︃
. (2.8)

For general time-dependent Hamiltonians, however, the time-evolution operator
must be found by a general solution of the Schrödinger equation considering each
of the basis states, or some perturbative expansion.
In some cases, it is possible to reduce the Hamiltonian to a solvable form by

means of a frame transformation. Unitary operators can be interpreted as a mapping
from one basis of a vector space to another, so taking the state |𝜓 ⟩ to Û |𝜓 ⟩ is an
analogue to changing the reference frame in classical mechanics. The Hamiltonian
is modified by this transformation. The Schrödinger equation for these new states
must be satisfied by a new Hamiltonian Ĥ′, so

Ĥ′Û |𝜓 ⟩ = 𝑖ℏ𝜕𝑡
(︁
Û |𝜓 ⟩)︁ = 𝑖ℏ

(︁
𝜕𝑡 Û

)︁ |𝜓 ⟩ + 𝑖ℏÛ𝜕𝑡 |𝜓 ⟩. (2.9)

The last term contains the time derivative from the original Schrödinger equation,
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and so by inserting identity operations explicitly as Û†Û , we reach

Ĥ′
= ÛĤÛ† + 𝑖ℏ(︁𝜕𝑡 Û )︁

Û†
. (2.10)

This is particularly useful for the common pattern of Hamiltonians that can be
split into system and time-dependent interaction components as Ĥ = Ĥsys + Ĥint,
where the system alone can be solved exactly. Typically only the effect of the
interaction is interesting, and the system component can be rotated out by a frame
transformation of the adjoint of its unitary dynamics Û†

sys. For a time-invariant
system Hamiltonian, this is explicitly

Ĥ′
= 𝑒𝑖Ĥsys𝑡/ℏĤint𝑒

−𝑖Ĥsys𝑡/ℏ. (2.11)

A few exponentials can be evaluated exactly via their power series into simple
sums of operators, such as exponentials of Pauli operators. More commonly, the
exponentials must be massaged into a more convenient form. If �̂� and �̂� do not
commute, then 𝑒�̂�+�̂� ≠ 𝑒�̂�𝑒 �̂� . Instead, one relates 𝑒�̂�𝑒 �̂� to a single exponential 𝑒�̂� by
the Baker–Campbell–Hausdorff formula16:

�̂� = �̂� + �̂� + 1
2 [�̂�, �̂�] +

1
12

(︂ [︁
�̂�, [�̂�, �̂�]]︁ − [︁

�̂�, [�̂�, �̂�]]︁ )︂ + · · · . (2.12)

A formal proof of this requires too much Lie theory to be worth reproducing here,
but can be found in the works of Bonfiglioli and Fulci 16 , and Hall 46 . We will make
much use of a result following from this formula, that

𝑒�̂��̂�𝑒−�̂� = �̂� + [�̂�, �̂�] + 1
2!

[︁
�̂�, [�̂�, �̂�]]︁ + 1

3!

[︂
�̂�,

[︁
�̂�, [�̂�, �̂�]]︁ ]︂ + · · · , (2.13)

of which the utility for unitary frame transformations is obvious.
When the solution of a Hamiltonian is not analytically tractable with exact frame-

transformation methods, it becomes useful to pursue perturbative expansions. The
Magnus expansion considers the solution of the operator Schrödinger equation
of the form Û (𝑡) = exp �̂� (𝑡) for some �̂� =

∑︁
𝑗 �̂� 𝑗 , where the successive terms are

associated with increasing order. By inspection of the differential equation and the
solution ansatz, we can recast the problem to(︁

𝜕𝑡𝑒
�̂� )︁

𝑒−�̂� = − 𝑖

ℏ
Ĥ. (2.14)

Similarly to before, we will defer to prior work for a complete description75. Qual-
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itatively, one evaluates the derivative of the exponential map to find an infinite
series of the form

𝜕𝑡�̂� = 𝑐1Ĥ + 𝑐2 [Ĥ, �̂�] + 𝑐3
[︁[Ĥ, �̂�], �̂� ]︁ + · · · . (2.15)

Direct integration yields a recursive definition of �̂� , from which we identify the
Magnus terms:

�̂�1 = − 𝑖
ℏ

∫ 𝑡

0 d𝑡1 Ĥ(𝑡1)

�̂�2 = − 1
2ℏ2

∫ 𝑡

0 d𝑡1
∫ 𝑡1

0 d𝑡2 [Ĥ(𝑡1), Ĥ(𝑡2)] (2.16)

�̂�3 = 𝑖
6ℏ3

∫ 𝑡

0 d𝑡1
∫ 𝑡1

0 d𝑡2
∫ 𝑡2

0 d𝑡3
(︂ [︁
Ĥ(𝑡1), [Ĥ(𝑡2), Ĥ(𝑡3)]

]︁ + [︁
Ĥ(𝑡3), [Ĥ(𝑡2), Ĥ(𝑡1)]

]︁ )︂
.

...

The Magnus expansion is preferable to many other possibilities as it maintains the
unitarity of the operator even when the series is truncated. We will visit alternative
perturbative expansions, which share this property, in chapter 6 to evaluate and
control complex dynamics in two-qubit operations in trapped ions.
The Schrödinger equation is strictly accurate for all (non-relativistic) quantum

systems, but relies on all subspaces being explicitly accounted for. In general,
a system will undergo unwanted interactions with a much larger environment.
This describes an open quantum system, as opposed to the closed systems hitherto
considered. There are several formalisms for investigating these behaviours18,
but our needs on this front are rather limited. We will need only consider weak
perturbations, where we can assume the Born–Markov conditions that the system
and environment are weakly coupled and remain separable at all times, and any
correlations within the environment decay much quicker than any in the system.
Under this approximation, the time evolution of the density operator for only

the system of interest can be described by the Lindblad master equation78:

𝜕𝑡 �̂� = − 𝑖

ℏ

[︁
Ĥ, �̂�

]︁ + 1
2
∑︂
𝑗

(︁
2�̂�𝑗 �̂��̂�

†
𝑗 − �̂�

†
𝑗 �̂�𝑗 �̂� − �̂��̂�

†
𝑗 �̂�𝑗

)︁
. (2.17)

The {�̂�𝑗 } are collapse or dissipation operators, which represent the effects of the
environment on the system. These operators must preserve the completely positive
trace-preserving properties of the evolution. Complete positivity is the requirement
that the operation, when applied to only a subsystem of a quantum state in a larger
Hilbert space, maintains the positive-semidefinite nature of the whole density
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matrix. This applies a condition on the collapse operators that they are bounded,
that is that each has a finite maximum of ⟨𝜓 |�̂�†𝑗 �̂�𝑗 |𝜓 ⟩ over all normalised vectors
{|𝜓 ⟩} in the relevant Hilbert space.
The only effect that we shall consider in this framework is motional dephasing,

associated with �̂�†�̂�; in the trapped-ion system in use at Imperial, the time scales
of qubit noise processes are far longer than those of ion motion. This operator is
not strictly bounded; in an infinite-dimensioned Hilbert space, its eigenvalues are
the set of natural numbers. For our purposes, we will be able to consider only a
finite subspace up to some maximal motional state that never becomes populated.
Within this related Hilbert space, the corresponding truncated operator is bounded.
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Ion-TrapQuantum Computing

The electronic states of single ions are natural choices for encoding quantum in-
formation. They are clearly at the quantum scale, yet an appropriate choice can
provide very long lifetimes and fabrication of each qubit is trivially reproducible;
any two ions of the same charge and isotope are guaranteed to have precisely equal
energy-level structures. Ions can be isolated and confined with simple electromag-
netic control fields, and the Coulomb interaction between them will keep them
sufficiently spatially separated that they can be individually addressed. Depending
on which electronic states are used for the qubits, this may be with lasers, or with
microwaves if an external field is applied to modify the transition frequencies of
different qubits. The motion of the ions is coupled via the same Coulomb interac-
tion, which once cooled into the quantum regime can be used as a communication
bus between all the ions in the same trap.
Trapping is principally done with an electrostatic field to limit motion axially,

and either an oscillating electric field or a static magnetic field to provide the
perpendicular confinement. These two types of trap are called, respectively, linear rf
or Paul traps91 and Penning traps31. In an idealised world with perfect experimental
control, total isolation from all environmental factors, and unlimited laboratory
space and budget, the two traps provide identical platforms for quantum information
processing. Returning to reality, however, linear rf traps are the most common
choice for quantum information processing due to simpler optical access, greater
control over the radial confinement, and the non-necessity of large magnetic fields.
The current highest-reported two-qubit average gate fidelities were achieved with
ions in a linear rf trap, at slightly over 99.9%4,40, although these results are now
over five years old. This safely reaches the fidelities required for error-corrected
quantum computing13, and more recent work out of the same groups has focussed
more on performing gates at high speeds107, at lower powers with microwaves117,
and with mixed ion species58.
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Figure 3.1—The principal choices of encodings
for qubits in trapped ions and the two major ad-
dressing schemes. The two qubit states are loc-
ated in different Zeeman sublevels of the elec-
tronic ground state, different hyperfine levels of
the ground-state manifold, or in an optical setup
with one qubit in the ground state and the other in
a metastable state in a different orbital. Frequency
separations for these are on the orders of 10MHz,
1 GHz and 100 THz respectively. Optical qubits
are driven by high-powered lasers as simple two-
level systems. Hyperfine and Zeeman qubits are
most commonly addressed in a Raman configura-
tion forming a lambda system, though microwave
sources can theoretically drive hyperfine qubits in
a single-photon mode.
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3.1 Qubit encodings

In principle, a qubit can be encoded in any two distinct energy levels of a trapped
ion. In practice, both of the lifetimes must be long enough to carry out all the
required operations while still permitting controlled transitions, and it must be
possible to reliably prepare the qubit in a known state and read out its new state
later35. Group-II ions are a common host for qubits as ionisation leaves a single
valence electron, creating alkali-like states with simple energy-level structures.
Access to an effective cooling transition is also an important part of choosing an
ion, though not one integral to this thesis; for a deeper review, see ref. 38.
The preparation requirement typically ensures that at least one element of the

ground-state manifold is part of the qubit, but the choice of the other state has
more flexibility. Broadly, the three main routes in order of frequency separation
are to encode the two states separated by Zeeman or hyperfine splitting, or use an
optical qubit with the upper state in a different electronic orbital. These categories
are broken down further by the addressing mode used to drive transitions between
the qubit states: single-photon methods, or creating a lambda system with a third
level and using a Raman configuration. Figure 3.1 illustrates these main schemes.
The easiest conceptually is to use the largest splitting as a simple two-level

system addressed with a single laser, typically in the red and infrared range. These
lasers were historically more available than those at the blue end of the spectrum
used by other qubit schemes, and optical components remain easier to manufacture
with lower relative transmission errors for longer wavelengths. Coherence times of
these qubits are fundamentally limited by the lifetime of the excited state used. This
all but requires the two levels to be separated by a dipole-forbidden transition, and
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the necessity of driving a state change with the available laser power in a reasonable
amount of time ensures that quadrupole transitions are by far the most feasible
candidates. Lifetimes on the order of one second are typical for these quadrupole
transitions5. However, to achieve coherent operations for this duration, the laser
itself must have a linewidth on the order of 1Hz; the dephasing rate is tied to the
frequency coherence of the driving field, which in the single-photon case is directly
derived from the laser. Such qubits are also generally susceptible to magnetic field
noise, although much of this can be mitigated with modern shielding techniques102.
Readout is achieved in these systems by the electron-shelving technique, driving a
transition from one of the two qubit states to a short-lived level with a detectable
fluorescent decay87,106.

The hard physical limit on qubit lifetimes can be avoided by encoding the states
in separate Zeeman52,95 or, if the nucleus has a net spin, hyperfine levels of the
same manifold83,125. With transition frequencies ranging from a few megahertz
for Zeeman qubits to a few gigahertz for hyperfine qubits, the probability of spon-
taneous decay is effectively zero and lifetimes can exceed an hour130,131. Due to
their nature, Zeeman qubits suffer from the same sensitivity to magnetic field
fluctuations as optical qubits102. With hyperfine structure it is possible to use clock
states whose transitions are first-order magnetic-field insensitive48,90. In practice,
groups generally operate with a small well controlled bias field in order to improve
cooling and readout30,93. These qubits can be driven directly with microwaves49,81,
but it is more common to use a laser-based Raman transition for reduced crosstalk
and stronger coupling to the motion. An alternative approach to reduce crosstalk
errors with microwaves is to apply a continuous dressing field to stabilise several
field-sensitive states into a two-dimensional basis which is robust against mag-
netic fluctuations124,133. Such schemes do generally struggle to engineer sufficient
ion–motion interaction to perform two-qubit gates quickly, however134.
During my PhD, the Imperial experimental ion-trapping group used the states

|𝑔⟩ = 42𝑆 1
2 ,𝑚𝑗=− 1

2
and |𝑒⟩ = 32𝐷 5

2 ,𝑚𝑗=− 1
2
in 40Ca+ as an optical qubit, with a transition

wavelength of 729 nm. Its energy-level structure is illustrated in fig. 3.2. Full
details and justifications may be found in recent experimental PhD theses from
the group57,60,63, although the original decision was made several PhD cycles ago.
40Ca+ is still an attractive ion for optical qubits, as its transition wavelengths are all
between infrared and visible blue, a region well served by commercial optics and
lasers108. This was the setting for the first non-adiabatic two-ion quantum logic
gate109, and the first direct qubit measurements at fidelities high enough to achieve
fault-tolerant computing86. It continued to be used as a host for investigations
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Figure 3.2—Energy-level structure of 40Ca+ including the Zeeman sub-
levels, with the optical-qubit and readout transitions marked. In the
nuclear ground state, it has no nuclear spin and consequently no hy-
perfine structure. The qubit is encoded in the electric-dipole-forbidden
transition at 729 nm, addressed by a single laser. The fluorescent trans-
ition at 397 nm is used to measure the qubit; the |𝑔⟩ state interacts
radiatively, allowing detection by photon collection, while the |𝑒⟩
state is non-interacting. It is also possible to use the two Zeeman
sublevels of the 𝑆1/2 state as a qubit, with two driving fields in the
Raman configuration. 4 2S1/2
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into process tomography98, high-fidelity gates8 and large-scale entanglement85.
More recently, a full rack-integrated quantum computing system with two dozen
qubits was demonstrated for these calcium ions94. The quest for higher fidelities
and longer lifetimes, however, has led some other calcium-using groups to move to
43Ca+ due to the hyperfine levels it affords49,107.
For all simple two-level systems, the static contribution to the Hamiltonian is

Ĥqubit/ℏ =
1
2𝜔𝑒𝑔

(︁|𝑒⟩⟨𝑒 | − |𝑔⟩⟨𝑔 |)︁ = 1
2𝜔𝑒𝑔�̂�𝑧, (3.1)

where the zero point of energy is chosen to be half way between the lower and
upper states, respectively labelled |𝑔⟩ and |𝑒⟩. The frequency separation is then 𝜔𝑒𝑔,
and it is convenient to write the Hamiltonian in terms of the Pauli 𝑍 operator.

3.2 Trapped-ion dynamics

Ion traps confine their contents in three-dimensional space. While the axial fields
are almost always supplied electrostatically, the radial confining fields have different
properties between Penning and linear rf traps; the former are achieved with static
magnetic fields and the latter with oscillating electric fields. A full treatment of ion
dynamics should consider these, and would result in radial motion of the ions in
addition to the axial motion we will derive in this section. Quantum computing
applications almost universally choose to trap ions in a nearly one-dimensional
chain along the trap axis, since this allows individual ions to be addressed without
complicated stroboscopic techniques. This axis is conventionally labelled 𝑧.

We will make the assumption that the radially confining fields are designed such
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that the ions do not significantly deviate from the trap axis. For the general positions
of any two ions 𝒓1 and 𝒓2, both must have approximately zero radial distance from
the axis, and the separation 𝒓2 − 𝒓1 = 𝜹𝒓𝑧 + 𝜹𝒓⊥ should satisfy |𝜹𝒓⊥ | ≪ |𝜹𝒓𝑧 | at all
times. This assumption allows us to simplify the mathematics down to a single
dimension, and represent the usual regime for trapped-ion quantum computing. It
breaks down for confining fields that are weak compared to the axial motion, for
strong axial confining fields, or for large numbers of ions, but the situations in this
thesis will not approach such scenarios. Treatments of the radial motion of trapped
ions may be found in theses from the Imperial group on Penning traps57 and linear
rf traps28.

Under these assumptions, the trap geometry and electromagnetic fields produce
a one-dimensional harmonic potential for each ion characterised by a frequency
𝜔𝑧 , which depends on the masses of all of the trapped ions. Taking each ion to be
at an axial position 𝑧𝑖 , with mass of𝑚𝑖 and a single charge of −𝑒 , the approximated
system potential is

𝑉 (𝑡) ≈ 1
2
∑︂
𝑖

𝑚𝑖𝜔
2
𝑧𝑧𝑖 (𝑡)2 + 𝑒2

4𝜋𝜖0

∑︂
⟨𝑖, 𝑗⟩

1
|𝑧𝑗 (𝑡) − 𝑧𝑖 (𝑡) | . (3.2)

This thesis deals only with chains of equal ions, so for simplicity we consider equal
masses𝑚𝑖 =𝑚. It is further convenient to define a length scale ℓ = 3

√︁
𝑒2/(4𝜋𝜖0𝑚𝜔2

𝑧 )
in order to move to a dimensionless coordinate system defined by 𝜁𝑖 = 𝑧𝑖/ℓ , with
the labels ordered such that 𝜁𝑖 < 𝜁𝑖+1. This length scale is generally on the order of
micrometres: for 40Ca+ trapped at 500 kHz, it is approximately 7 µm.
With sufficiently strong trapping potentials, the ions will have well-separated

equilibrium positions 𝜁0,𝑖 and undergo small-amplitude oscillations 𝛿𝜁𝑖 (𝑡) around
these points. The equilibrium positions are at the point of zero force, defined by
the solutions to

1
𝑚𝜔2

𝑧 ℓ2 · 𝜕𝑉
𝜕𝜁𝑖

= 𝜁𝑖 −
∑︂
𝑗<𝑖

1
(𝜁𝑗 − 𝜁𝑖)2 +

∑︂
𝑗>𝑖

1
(𝜁𝑗 − 𝜁𝑖)2 = 0. (3.3)

This must be solved numerically beyond the three-ion case, which is simple with
Newton–Raphson iteration. The Jacobian 𝐽 of the system of equations is

𝐽𝑖 𝑗 =
1

𝑚𝜔2
𝑧 ℓ2 · 𝜕2𝑉

𝜕𝜁𝑖𝜕𝜁𝑗
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 +

∑︂
𝑘≠𝑖

2
|𝜁𝑘 − 𝜁𝑖 |3

for 𝑗 = 𝑖

−2
|𝜁𝑗 − 𝜁𝑖 |3

otherwise,
(3.4)
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Ions Equilibrium positions /ℓ

2 −0.630 0.630

3 −1.08 0 1.08

4 −1.44 −0.454 0.454 1.44

5 −1.74 −0.822 0 0.822 1.74

6 −2.01 −1.14 −0.370 0.370 1.14 2.01

7 −2.25 −1.41 −0.687 0 0.687 1.41 2.25

8 −2.48 −1.66 −0.967 −0.318 0.318 0.967 1.66 2.48

9 −2.68 −1.89 −1.22 −0.600 0 0.600 1.22 1.89 2.68

10 −2.87 −2.10 −1.45 −0.854 −0.282 0.282 0.854 1.45 2.10 2.87

Table 3.1—Equilibrium positions of identical singly charged ions in linear chains within a trap. Ions
closer to the centre of the chain are closer to their neighbours as the Coulomb force compresses the
chain. The positions are given in terms of the length scale ℓ = 3

√︁
𝑒2/(4𝜋𝜖0𝑚𝜔2

𝑧 ). For 40Ca+ trapped
at an axial frequency of 500 kHz, ℓ ≈ 7 µm.

and the dimensionality can be halved via symmetry; the positions will be symmetric
around the trap centre 𝜁 = 0, with an ion exactly at the centre if there are an odd
number. The solutions for up to ten ions are illustrated in table 3.1.
The equations of motion for the small displacements can then be derived from

eq. (3.2). Consider the second-order Taylor expansion 𝑉 around the equilibrium,
with the reference chosen to make zero potential at zero displacement:

𝑉 ∝
∑︂
𝑖

(︃
1 +

∑︂
𝑗≠𝑖

2
|𝜁0, 𝑗 − 𝜁0,𝑖 |3

)︃
(𝛿𝜁𝑖)2 −

∑︂
𝑖, 𝑗
𝑗≠𝑖

2
|𝜁0, 𝑗 − 𝜁0,𝑖 |3

𝛿𝜁𝑖 𝛿𝜁𝑗 . (3.5)

The dimensionless matrix (𝑉 𝑖 𝑗 )/(𝑚𝜔2
𝑧 ℓ

2) is real symmetric over independent dis-
placements and positive semi-definite, so its eigenvalues 𝜅2

𝑖 are non-negative and
its eigenvectors {𝒃𝑖} form an orthonormal basis. A mapping 𝜹𝜻 (𝑡) → ∑︁

𝑖 𝑞𝑖 (𝑡)𝒃𝑖
then simplifies the classical Hamiltonian to

𝐻 (𝑡) = 1
2𝑚

∑︂
𝑖

𝑝𝑖 (𝑡)2 + 1
2𝑚𝜔2

𝑧

∑︂
𝑖

𝜅2
𝑖 𝑞𝑖 (𝑡)2. (3.6)
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Ions Frequency /𝜔𝑧 Normal mode participation

2
1 0.707 0.707

√
3 −0.707 0.707

3

1 0.577 0.577 0.577

√
3 −0.707 0 0.707

2.41 0.408 −0.816 0.408

4

1 0.500 0.500 0.500 0.500

√
3 −0.674 −0.213 0.213 0.674

2.41 0.500 −0.500 −0.500 0.500

3.05 0.213 −0.674 0.674 −0.213

Table 3.2—Joint normal motional modes of identical ions in linear chains within a trap. The
frequency of each normalmode is given in terms of the axial trapping frequency𝜔𝑧 . The participation
of each ion in the motion is scaled such that each mode is described by a vector with unit magnitude.
The average displacement of each ion is zero; the motion oscillates forwards and backwards.

The standard treatment of quantisation and introduction of creation �̂�†𝑗 ∝ �̂�𝑗 + 𝑖�̂�𝑗
and annihilation �̂�𝑗 operators diagonalises the motional Hamiltonian to

Ĥmot/ℏ =
∑︂
𝑖

𝜅𝑖𝜔𝑧�̂�
†
𝑖 �̂�𝑖 (3.7)

up to a constant offset, where the sum is over the normal modes of motion. These
modes are independent up to the validity of the second-order Taylor expansion;
the first neglected terms are on the order of 10−3 times weaker.

The ions participate differently in each mode, proportional to the overlap of the
relevant individual displacement basis vector and the eigenvector 𝒃𝑖 . The relative
frequencies 𝜅𝑖 and the normal-mode participations are depicted in table 3.2. No
matter how many ions are in the trap, the two principal modes are the centre-of-
mass mode at a frequency of 𝜔𝑧 with the ions moving together in phase, and the
breathing mode at

√
3𝜔𝑧 with the ions expanding and contracting around the centre

by amounts proportional to their equilibrium displacement. Higher-energy modes
need to be calculated numerically, and the unequal participation amongst ions
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typically makes them undesirable for interactions. The later work in this thesis
will almost universally deal with the centre-of-mass mode, although with only
two ions in a trap, the analyses would apply in the same way on the breathing
mode. Importantly, direct measurement of the motional states is not possible.
The positional spread of the wavefunction for the zero-point motional state is
𝑞rms =

√︁
ℏ/(2𝑚𝜅𝑚𝜔𝑧). For 40Ca+ at 500 kHz on the centre-of-mass mode, this is

around 16 nm—significantly shorter than the wavelength of any interrogating laser.
The only common measurement used in trapped ions is of the qubit states, via the
internal states of the ions.

3.3 Ion–laser interactions

3.3.1 General Hamiltonian

A complete description of ion–laser interactions is rather involved, and is left to
better works17,73,138. The derivations presented here are illustrative approximations
rather than an attempt to be entirely rigorous. For the methods of trapped-ion
quantum computing considered in this thesis, only the dynamics of the ion are
important; any induced variation in an applied electromagnetic field is relevant
only if it has a measurable effect on the ion. The lasers or microwave sources used
invariably have sufficient intensity to provide a continuous source of photons, and
qubit transitions are deliberately chosen to make spontaneous emission negligible.
We will use a semiclassical treatment making use of these features.

In the presence of an electromagnetic field with vector magnetic potential 𝑨 the
effective momentum of an ion is modified as 𝒑 → 𝒑−𝑒𝑨, changing the Hamiltonian
term to

𝐻 =
1

2𝑚 (𝒑 − 𝑒𝑨)2 =
1

2𝑚
(︁
𝒑2 − 𝑒𝒑 · 𝑨 − 𝑒𝑨 · 𝒑 + 𝑒2𝑨2)︁ . (3.8)

The 𝒑2 term is the full dimension of the momentum already considered in eq. (3.6),
while the 𝑨2 term requires at least two-photon processes and is negligible for
the desired driving fields. In the Coulomb gauge where 𝑨 is purely transverse,
it commutes with the quantised momentum 𝒑 → �̂� = −𝑖ℏ∇, as ∇ · (𝑨𝜓 ) =

(∇ · 𝑨)𝜓 + 𝑨 · ∇𝜓 and the first term is chosen to be zero. This leads to the new
ion–field interaction Hamiltonian term being described by

Ĥint = − 𝑒

𝑚
�̂� · 𝑨. (3.9)
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As an electromagnetic field at a frequency 𝜔ℓ , 𝑨 has a familiar plane-wave solution

𝑨(𝒓, 𝑡) = 𝑨0 exp
[︁
𝑖 (𝒌 · 𝒓 − 𝜔ℓ𝑡)

]︁ + H.c. (3.10)

for a wavevector 𝒌 satisfying the dispersion relation 𝜔ℓ = 𝑐 |𝒌 |. The constant vector
𝑨0 defines the polarisation axis and strength of the incident field.
An electron’s position can be decomposed as its ion’s position 𝒓𝑗 plus a small

relative displacement 𝜹𝒓𝑗 . The interaction Hamiltonian for a field acting on multiple
ions can then be rewritten as

Ĥint = − 𝑒

𝑚

∑︂
𝑗

𝑒𝑖 (𝒌 ·𝒓𝑗−𝜔ℓ𝑡)⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
motion

�̂� · 𝑨0𝑒
𝑖 (𝒌 ·𝜹𝒓𝑗−𝜙𝑗 )⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

ion state

+ H.c., (3.11)

where the position-dependent relative field phase 𝜙𝑗 can be absorbed without loss of
generality into the chosen basis states. The term labelled ion state in this Hamilto-
nian is responsible for the electronic transitions. Laser light has a wavelength
in the hundreds of nanometres, while the distance of the electron from the ion
|𝜹𝒓𝑗 | is several orders of magnitude smaller, at around a few Bohr radii. With this
exponent, only the first few terms of the Taylor expansion with respect to 𝒌 · 𝜹𝒓𝑗
are relevant. The leading-order term represents electric dipole transitions, while
the term linear in 𝒌 · 𝜹𝒓𝑗 contains the magnetic dipole and electric quadrupole
transitions, and so on. Rather than dealing with the field form explicitly, it is far
more convenient to limit the analysis to the two states of interest per ion, |𝑔⟩ and
|𝑒⟩, and use Pauli operators to describe the transition. Explicitly, one can define a
real coupling strength 𝛺𝑗 called the Rabi frequency such that

− 𝑒

𝑚
�̂� · 𝑨0𝑒

𝑖 (𝒌 ·𝜹𝒓𝑗−𝜙𝑗 ) ≈ ℏ𝛺𝑗

2 𝑒−𝑖𝜙 �̂� ( 𝑗)
𝑥 (3.12)

where the ion state definitions are chosen to use the Pauli 𝑋 operator with a phase
difference of𝜙 that is the same for all ions. When the states considered are separated
by an electric-dipole-forbidden transition, there are also terms proportional to |𝑔⟩⟨𝑔 |
and |𝑒⟩⟨𝑒 |, which must be compensated experimentally43.

The link to the joint motion in eq. (3.11) is made clearer by considering only the
axial component by taking 𝒌 · 𝒓𝑗 → 𝑘𝑧�̂�𝑗 , at which point the axial positions �̂�𝑗 can
be expanded in terms of the raising and lowering operators of each of the motional
modes. This leads to a term of the form

exp
[︁
𝑖 (𝒌 · 𝒓𝑗 − 𝜔ℓ𝑡)

]︁ → exp
[︁
𝑖
(︁∑︁

𝑚𝜂𝑗,𝑚 (�̂�𝑚 + �̂�†𝑚) − 𝜔ℓ𝑡
)︁ ]︁
, (3.13)
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where the sum is over the motional modes, and

𝜂𝑗,𝑚 = 𝑘𝑧𝑠𝑗,𝑚

√︄
ℏ

2𝑚𝜔𝑧
(3.14)

is the Lamb–Dicke parameter, which characterises the coupling of each ion-state
transition with each motional-mode transition. Ion traps typically operate with its
value around 1⁄10

28,107. The dimensionless scaling factors 𝑠𝑗,𝑚 are defined by how
strongly ion 𝑗 couples to motional mode𝑚. Using the relative mode frequencies 𝜅𝑚
and the normal-mode participation unit vector components 𝑏𝑗,𝑚 given in table 3.2,
the scaling factors for a chain of 𝑁 ions59 are 𝑠𝑗,𝑚 = 𝑏𝑗,𝑚

√︁
𝑁 /𝜅𝑚 . As expected, the

centre-of-mass mode is most strongly affected by the incident laser field due to
having the smallest 𝜅 = 1. For simplicity, we will consider only this mode from
now on, for which all ions have the same Lamb–Dicke parameter 𝜂. Combining the
three Hamiltonian components of eqs. (3.1), (3.7) and (3.11), we reach the lab-frame
ion-trap Hamiltonian for two-level ions and their centre-of-mass motion:

Ĥlab/ℏ =
1
2
∑︂
𝑗

𝜔𝑒𝑔�̂�
( 𝑗)
𝑧 + 𝜔𝑧�̂�

†�̂�⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Ĥsys/ℏ

+
∑︂
𝑗

𝛺�̂� ( 𝑗)
𝑥 cos

[︁
𝜂 (�̂� + �̂�†) − 𝜔ℓ𝑡 − 𝜙

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

Ĥlaser/ℏ

. (3.15)

The basis of interest is the eigenstates of the system Hamiltonian. These are
labelled |𝑥, 𝑛⟩, where 𝑛 is the number of phonons in the centre-of-mass mode, and
𝑥 ∈ {𝑔, 𝑒}𝑁 is a descriptor of the state of the 𝑁 ions. For example, |𝑔𝑔, 0⟩ is the joint
ground state of two ions and the motion.

In order to more clearly calculate the allowed transition processes, the electronic
and motional energy terms can be removed from the Hamiltonian by moving
to an interaction frame. Under a unitary transformation exp(𝑖Ĥsys𝑡/ℏ), the new
interaction Hamiltonian becomes

Ĥint/ℏ = 𝛺
∑︂
𝑗

𝑒𝑖𝜔𝑒𝑔𝑡�̂�
( 𝑗 )
𝑧 /2�̂� ( 𝑗)

𝑥 𝑒−𝑖𝜔𝑒𝑔𝑡�̂�
( 𝑗 )
𝑧 /2

× 𝑒𝑖𝜔𝑧𝑡�̂�
†�̂� cos

[︁
𝜂 (�̂� + �̂�†) − 𝜔ℓ𝑡 − 𝜙

]︁
𝑒−𝑖𝜔𝑧𝑡�̂�

†�̂�
(3.16)

once all trivial commutations have been resolved. Recognising that �̂�2
𝑧 = 1 and

writing �̂�𝑥 = �̂�+ + �̂�−, a series expansion gives exp(𝑖 𝜒�̂�𝑧) = cos 𝜒 + 𝑖�̂�𝑧 sin 𝜒 , so

𝑒𝑖 𝜒�̂�𝑧 �̂�𝑥𝑒
−𝑖 𝜒�̂�𝑧 = cos(2𝜒) (�̂�+ + �̂�−) + 𝑖 sin(2𝜒) (�̂�+ − �̂�−)

= 𝑒2𝑖 𝜒 �̂�+ + 𝑒−2𝑖 𝜒 �̂�−.
(3.17)
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The motional term requires more complex machinery to evaluate. Using the Baker–
Campbell–Hausdorff-derived eq. (2.13) to expand 𝑒�̂��̂�𝑒−�̂� into commutators of the
two operators, and as [�̂�†�̂�, �̂�] = −�̂� and [�̂�†�̂�, �̂�†] = �̂�†, we have

𝑒𝑖 𝜒�̂�
†�̂� (︁�̂� + �̂�†

)︁
𝑒−𝑖 𝜒�̂�

†�̂� = 𝑒−𝑖 𝜒�̂� + 𝑒𝑖 𝜒�̂�†. (3.18)

We are free to insert the identity expression 𝑒−𝑖 𝜒�̂�†�̂�𝑒𝑖 𝜒�̂�†�̂� between all operators of a
power series, so the cosine term in the lab-frame Hamiltonian of eq. (3.15) is moved
to the interaction picture by the replacement �̂� → 𝑒−𝑖𝜔𝑧𝑡 �̂�.
There are now three relevant frequencies: the qubit-state separation 𝜔𝑒𝑔, the

motional-state separation 𝜔𝑧 , and the interaction field 𝜔ℓ . While there are many
possible transitions, only those close to resonance can meaningfully contribute to
the dynamics. To simplify the interaction-picture Hamiltonian eq. (3.16), we make
a rotating-wave approximation to neglect any terms with 𝜔𝑒𝑔 + 𝜔ℓ , and define a
new selection frequency 𝜔𝑠 = 𝜔ℓ − 𝜔𝑒𝑔. This leads to a final Hamiltonian

Ĥint/ℏ =
∑︂
𝑗

𝛺

2 𝑒
−𝑖 (𝜔𝑠𝑡+𝜙)�̂� ( 𝑗)

+ exp
[︂
𝑖𝜂

(︁
𝑒−𝑖𝜔𝑧𝑡 �̂� + 𝑒𝑖𝜔𝑧𝑡 �̂�†

)︁ ]︂ + H.c., (3.19)

where the sum is over ions targeted by the interaction. This is the base Hamiltonian
for trapped-ion quantum computing. The derivations here used a single interaction
field, but essentially the same Hamiltonian is reached if the field is formed by two
separate components in a Raman configuration. The relevant wavevector becomes
the difference between the two fields, but the transitions remain in the same form.

3.3.2 Sideband transitions

The general interaction Hamiltonian of eq. (3.19) still contains two frequencies and
several possible transitions. For an initial qualitative view, the exponential can be
expanded up to the term linear in the Lamb–Dicke parameter. This gives three
terms in a rotating-wave approximation, shown here for a single ion:

Ĥ/ℏ ≈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑖𝜂𝛺

2
(︁
𝑒−𝑖 (𝛿𝑡+𝜙)�̂�+�̂� − 𝑒𝑖 (𝛿𝑡+𝜙)�̂�−�̂�†

)︁
𝜔𝑠 = −𝜔𝑧 + 𝛿, red;

𝛺
2
(︁
𝑒−𝑖 (𝛿𝑡+𝜙)�̂�+ + 𝑒𝑖 (𝛿𝑡+𝜙)�̂�−

)︁
𝜔𝑠 = 𝛿, carrier;

𝑖𝜂𝛺
2
(︁
𝑒−𝑖 (𝛿𝑡+𝜙)�̂�+�̂�† − 𝑒𝑖 (𝛿𝑡+𝜙)�̂�−�̂�

)︁
𝜔𝑠 = 𝜔𝑧 + 𝛿, blue.

(3.20)

The carrier transition is driven if the interaction-field frequency is close to the
qubit frequency, simply driving coherent oscillations between the two qubit states
without affecting the motion. If the interaction field is instead tuned to be one
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Figure 3.3—Sideband transitions up to first order in a single trapped ion inside the Lamb–Dicke
regime. The carrier couples the electronic states without affecting the motion, and is driven when
the interaction-field frequency is close to the separation between these two states. When the driving
frequency is detuned by one motional quantum from the qubit frequency, the red or blue sidebands
can be driven, which respectively remove or add a phonon while exciting the ion.

motional frequency away from the qubit frequency, one of the two first-order
sidebands is driven instead. These are called the red and the blue, with the red
sideband having the lower frequency. In these, a phonon of motion is removed
from or added to the system as the ion is excited, respectively. These low-order
terms are illustrated in fig. 3.3.
In each of these transitions, 𝛿 refers to some separate small detuning, with the

validity of this second rotating-wave approximation being approximately defined
by 𝛿 ≪ 𝜔𝑧 . Strictly, the approximation is valid only when every sideband is well
separated in frequency from every other transition. As more motional modes are
considered, especially at higher-order sidebands than given here, the frequency
spectrum becomes denser and off-resonant terms can play a more significant role.
In this thesis, we will only need to work in regimes where this approximation is
valid, either because of a weak interaction strength, or by exciting the transitions
very close to resonance. Each transition is on resonance when its 𝛿 is zero, though
mis-calibrations and other drifts often mean that the transitions are not addressed
precisely resonantly.
Each of these transitions couples pairs of joint qubit–motion states in a simple

Rabi model. For example, the carrier drives the transitions |𝑔, 𝑛⟩ ↔ |𝑒, 𝑛⟩, and the
blue sideband drives |𝑔, 𝑛⟩ ↔ |𝑒, 𝑛+1⟩. Taking a single coupled pair of states and
reducing the labels to |𝑔⟩ and |𝑒⟩, the Schrödinger equation can be solved exactly
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as a simple pair of coupled differential equations, giving a time-evolution operator

Û (𝑡) = 𝑒−𝑖𝛿𝑡/2
(︂
cos(𝛺′𝑡/2) + 𝑖 𝛿

𝛺′ sin(𝛺′𝑡/2)
)︂
|𝑒⟩⟨𝑒 |

+ 𝑒𝑖𝛿𝑡/2
(︂
cos(𝛺′𝑡/2) − 𝑖

𝛿

𝛺′ sin(𝛺′𝑡/2)
)︂
|𝑔⟩⟨𝑔|

− 𝑖
𝛺

𝛺′ sin(𝛺′𝑡/2)
(︂
𝑒−𝑖𝛿𝑡/2𝑒−𝑖𝜙

′ |𝑒⟩⟨𝑔 | + 𝑒𝑖𝛿𝑡/2𝑒𝑖𝜙
′ |𝑔⟩⟨𝑒 |

)︂
.

(3.21)

Exactly on resonance, this describes perfect sinusoidal oscillations between the
two coupled states with a Rabi frequency of 𝛺 . If the laser is detuned from the
transition by an amount 𝛿 , the Rabi frequency is modified to 𝛺′ =

√
𝛿2 +𝛺2, and

the oscillation amplitude is reduced by a factor of 1 + 𝛿2/𝛺2.
Conventional terminology is to call the shortest pulse that completely exchanges

the state populations a 𝜋 pulse, although from a mathematical point of view, its
duration is 𝑡 = 𝜋/𝛺′ implying Û is 4𝜋-periodic. After twice the length of a 𝜋 pulse,
the measured populations are the same, but a global phase factor of −1 is introduced
on the ion state. This is most relevant when the transition is applied to a single ion
in a chain.

Each pair of ground and excited states is coupled by exactly one transition, and
the oscillation frequency𝛺𝑛,𝑚 is dependent only on the two motional levels 𝑛 and𝑚
and the Lamb–Dicke parameter. To determine these more accurately, we consider
a more complete expansion of the exponential in the interaction Hamiltonian of
eq. (3.19). Using the Baker–Campbell–Hausdorff formula with

[︁[�̂�, �̂�†], �̂�]︁ = 0, the
motional component can be written as

exp
[︂
𝑖𝜂

(︁
𝑒−𝑖𝜔𝑧𝑡 �̂� + 𝑒𝑖𝜔𝑧𝑡 �̂�†

)︁ ]︂
= exp(−𝜂2/2) exp

(︁
𝑖𝜂𝑒𝑖𝜔𝑧𝑡 �̂�†

)︁
exp

(︁
𝑖𝜂𝑒−𝑖𝜔𝑧𝑡 �̂�

)︁
. (3.22)

The new coupling frequency is 𝛺𝑛,𝑚 = 𝛺
|︁|︁⟨𝑚 | ◦ |𝑛⟩

|︁|︁, where the matrix element
is of eq. (3.22). In this form, it is clear that for any pair of starting 𝑛 and ending
𝑚 motional states, all transition processes contain only frequencies (𝑚 − 𝑛)𝜔𝑧 ,
corresponding to the phonon difference. Further, there are a finite number of
contributing motion-dependent terms as only the first 𝑛 terms in the series of
expansion of exp(𝜒�̂�) |𝑛⟩ have a nonzero coefficient.

Explicitly, the frequencies are

𝛺𝑛,𝑚

𝛺
= 𝑒−𝜂

2/2𝜂 |𝑚−𝑛 |
√︄

min(𝑛,𝑚)!
max(𝑛,𝑚)! 𝐿

( |𝑚−𝑛 |)
min(𝑛,𝑚)

(︁
𝜂2)︁, (3.23)
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when defined in terms of the generalised Laguerre polynomials

𝐿(𝑎)
𝑛 (𝑥) =

𝑛∑︂
𝑗=0

(−1) 𝑗
(︃
𝑛 + 𝑎

𝑛 − 𝑗

)︃
𝑥 𝑗

𝑗 ! . (3.24)

The Rabi frequency describes a single physical coupling between two levels, and the
symmetry of eq. (3.23) mathematically illustrates that 𝛺𝑛,𝑚 = 𝛺𝑚,𝑛 . The first-order
transition frequencies are

carrier:
𝛺𝑛,𝑛

𝛺
= 1 − 1

2 (2𝑛 + 1)𝜂2 +O
(︁
𝜂4)︁,

red and blue:
𝛺𝑛,𝑛+1
𝛺

= 𝜂
√
𝑛 + 1

[︂
1 − 1

2 (𝑛 + 1)𝜂2 +O
(︁
𝜂4)︁ ]︂ . (3.25)

The leading-order terms of the second-order sideband transition frequencies are
𝜂2√︁(𝑛 + 1) (𝑛 + 2). The suitability of the series-expansion approximation used to
define eq. (3.20) therefore depends on both 𝜂 and the number of phonons being
small. Its region of validity is named the Lamb–Dicke regime. There are many
mathematical definitions of this in the literature, but the requirements are usually
that second-order sideband transitions are forbidden, and the frequencies of the
carrier and the first-order sidebands can be truncated to their leading-order terms.
One simple expression of these is (𝑛 + 1)𝜂2 ≪ 1. Within this limit, the carrier
couples all its pairs of states at the same frequency, but the first-order sidebands
couple proportional to the square root of the larger number of phonons, so different
pairs have generally incommensurate oscillations.

3.4 Mølmer–Sørensen gate

Only the carrier transition affects every possible basis state of the ion trap. Notably,
the first red sideband does not affect the state |𝑔, 0⟩, while the first blue sideband
does not affect |𝑒, 0⟩. The joint motion can therefore be used as a communication
bus, allowing two-qubit gates to be realised with only single-ion operations by
entangling the internal states of the ionswith themotion. This was the earliest major
proposal for fast, scalable quantum computing25 and became the first implemented
ion-trap quantum-logic gate, although the initial demonstration was between an
ionic and a motional qubit83. More advanced laser stabilisation was needed before
two separate ions could be coherently addressed and entangled with this scheme109.
Further, for general computing use, the reliance on a coherent motional qubit is
undesirable. Motional states decohere quickly due to voltage fluctuations and trap

36



Chapter 3 Ion-Trap Quantum Computing

Figure 3.4—The energy levels of the Mølmer–
Sørensen scheme. Two global fields are applied:
one slightly detuned from the blue sideband, and
the other detuned by an equal but opposite amount
from the red sideband. Inside the Lamb–Dicke
regime there are oscillatory dynamics between
|𝑔𝑔, 𝑛⟩ ↔ |𝑒𝑒, 𝑛⟩ and |𝑔𝑒, 𝑛⟩ ↔ |𝑒𝑔, 𝑛⟩ that are
independent of the motional state |𝑛⟩. If the inter-
action strength and detuning are chosen appropri-
ately, there is a pulse duration that will produce
two-qubit entanglement with no spurious coup-
ling to the motion.

𝜔𝑧

𝜔𝑧

𝜔𝑒𝑔

𝜔𝑒𝑔
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|𝑒𝑒⟩

heating, while the requirement to begin in the ground state of motion imposes
onerous cooling requirements. A better scheme would use the motion to couple the
qubits without the interaction strength being conditioned on the motional state.

One such option is the Mølmer–Sørensen gate 115,116. Assuming the Lamb–Dicke
regime, one applies both the red and blue sidebands simultaneously to multiple
ions, detuned by equal but opposite amounts 𝜖 at the same phase. The scheme is
illustrated in fig. 3.4. This produces a Hamiltonian

Ĥms/ℏ =
𝜂𝛺

2
(︁
𝑖𝑒−𝑖𝜙𝑆+ − 𝑖𝑒𝑖𝜙𝑆−

)︁ (︁
𝑒−𝑖𝜖𝑡 �̂�† + 𝑒𝑖𝜖𝑡 �̂�

)︁
, (3.26)

where 𝑆◦ =
∑︁

𝑗 �̂�
( 𝑗)
◦ is a sum of single-qubit Pauli operators. The phase 𝜙 chooses a

qubit operator in the �̂�𝑥–�̂�𝑦 plane, and the Mølmer–Sørensen gate is accordingly
occasionally referred to as a �̂�𝜙 ⊗ �̂�𝜙 gate to distinguish it from �̂�𝑧 ⊗ �̂�𝑧-interaction
schemes101. We will arbitrarily choose 𝜙 to make the qubit terms 𝑆𝑦 .

The time evolution of this Hamiltonian can be found by the Magnus expansion,
which terminates after two terms. With Ûms(𝑡) = exp

(︁
�̂�1(𝑡) + �̂�2(𝑡)

)︁
, the Magnus

operators from eq. (2.16) are

�̂�1(𝑡) = −𝑖 𝜂𝛺2 𝑆𝑦

∫ 𝑡

0
d𝑡1

(︁
𝑒−𝑖𝜖𝑡1�̂�† + 𝑒𝑖𝜖𝑡1�̂�

)︁
, and

�̂�2(𝑡) = 𝑖
(𝜂𝛺)2

4 𝑆
2
𝑦

∫ 𝑡

0
d𝑡1

∫ 𝑡1

0
d𝑡2 sin

(︁
𝜖 (𝑡2 − 𝑡1)

)︁
.

(3.27)

The first of these describes a state-dependent phase-space displacement: the positive
and negative eigenstates of 𝑆𝑦 undergo opposite circular trajectories. The second
term provides two-qubit interactions via the 𝑆2

𝑦 = 2(1 + �̂�𝑦 ⊗ �̂�𝑦) operator. If the
interaction is applied for a time 𝑡 = 2𝜋/𝜖 , the phase-space displacement returns to
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zero and the whole evolution is

Ûms
(︂2𝜋
𝜖

)︂
≡ cos

(︃
𝜋
𝜂2𝛺2

𝜖2

)︃
− 𝑖 sin

(︃
𝜋
𝜂2𝛺2

𝜖2

)︃
�̂�𝑦 ⊗ �̂�𝑦 , (3.28)

up to a global phase. Geometrically, the angle inside the trigonometric functions is
proportional to the area swept out by the phase-space trajectory. If the detuning
is set to 𝜖 = 2𝜂𝛺 , the Mølmer–Sørensen interaction creates Bell states from unen-
tangled ions. With simple additional single-qubit rotations, this can be transformed
into a quantum logic gate. Importantly, assuming the Lamb–Dicke regime holds,
this interaction is not dependent on the motional state, and so has far less taxing
requirements on cooling and isolation from external fields. This is not limited
to two-qubit processes. Provided all ions partake equally in the motional mode
addressed, the same technique maps the joint electronic ground state to a ghz-type
state∗, independent of the motional occupation and the number of ions82,114. Prac-
tically, the centre-of-mass mode is not always ideal due to its propensity to heating,
but for four ions there is a stretch mode with equal participation in alternating
directions that can be used for larger-scale entanglement103.

Aside from requiring relatively weak ion–motion coupling to achieve the Lamb–
Dicke regime, the other major requirement for good fidelity is that the field does not
significantly drive the carrier transition off-resonantly. This requires that 𝛺 ≪ 𝜔𝑧 .
The original formulation of the gate115 drove the transition adiabatically, preventing
population of the intermediate states. It relied on a phase difference between the
left and right paths of fig. 3.4, which, when treated as two-photon processes, have
coupling frequencies proportional to 𝑛 and 𝑛 + 1 respectively. The phase difference
cancelled out the motion-dependent 𝑛 component of these. This was only possible
with a further constraint that 𝜂𝛺 ≪ 𝜖 , and so the gate was exceedingly slow. The
stronger-coupled form removes this restriction116, allowing the gate speed to be
generally limited by available laser power and the validity of the Lamb–Dicke
approximation. At the time of writing, the record fidelity for a two-qubit gate was
achieved by this method40, tied with a �̂�𝑧 ⊗ �̂�𝑧-based gate also in trapped ions4.

Chapter 5 will examine the dynamics of the Mølmer–Sørensen interaction when
there are various static frequency offsets and miscalibrations, and present driving
schemes to mitigate undesired effects. In chapter 6, the gate will be taken outside the
Lamb–Dicke approximation by a general method that produces the same Bell-state

∗Greenberger–Horne–Zeilinger states are of the form ( |00 . . . 0⟩ + |11 . . . 1⟩)/√2, and the term
is usually only applied to three-or-more-qubit systems. The Mølmer–Sørensen interaction creates
states of the form

(︁ |00 . . . 0⟩ + 𝑒𝑖𝜙 |11 . . . 1⟩)︁/√2, including the two-qubit case.
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creation, breaking previously fundamental limitations on motional populations
and usable ion–motion coupling strengths. First, however, we return to single-ion
dynamics, and consider the problem of coherence creation and certification.
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Chapter 4

Certification of Higher-Order Coherence

Coauthorship
The experimental work in this chapter was carried out by the ion-
trapping group at Imperial College London. I calculated all of the
measurement statistics to derive the unbiased estimators, and found the
optimal state-creation and projection sequences numerically. Florian
Mintert and I proved the robustness of the interference-pattern certifier
under general measurement operators, and I performed all the numer-
ical optimisations to verify the new threshold values. The work in this
chapter was also described in ref. 29.

The manipulation and distillation of entanglement was recognised early as essen-
tial to quantum computation11, leading to efforts to move beyond Bell-inequality
tests to more discriminating methods of detecting entanglement54,92 that have
only multiplied with time55,56. Coherence, however, has only more recently been
recognised as a resource in the same manner6,69,119, with its uses now being known
for applications varying from quantum information processing51,111, to the creation
of nonequilibrium entropy105 and the extraction of thermodynamic work66.

A hierarchy for quantum coherence was defined in section 2.1, where a pure state
|𝜓 ⟩ is said to be coherent in a particular basis {| 𝑗⟩} if its representation |𝜓 ⟩ = ∑︁

𝑗 𝑐𝑗 | 𝑗⟩
has at least two nonzero coefficients 𝑐𝑗 . This readily extends to multiple levels,
where a pure state is called 𝑘-coherent, or said to have a coherence rank of 𝑘 , if
it has at least 𝑘 non-zero coefficients. Mixed states are 𝑘-coherent if all possible
pure-state decompositions include at least one 𝑘-coherent element. Despite having
this simple classification scheme, it is not trivial to continuously quantify coherence
in the general case. It feels logical that

(︁|0⟩ + |1⟩)︁/√2 should be somehow more
coherent than

√
0.1|0⟩ +√0.9|1⟩ due to the greater imbalance between the two basis

states, yet this idea is harder to justify at higher levels of coherence, or with density
operators that may have multiple possible decompositions. Direct measurement is
typically fraught, as the only measurement basis available is usually the basis over
which the coherence is defined. Still, it is valuable to be able to classify the degree
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of coherence of a system; higher-order coherence is its own resource, which may
be expended to enhance phase-discrimination tasks20,99.

Assuming perfectly coherent operations and lossless measurements in the coher-
ence basis, it would be possible to determine the coherence of a state by complete
reconstruction of its density operator. Even with these perfect conditions, extensive
time is required to build up sufficiently precise statistics on the elements, and
for high orders of coherence in mixed states the subsequent classical analysis is
similarly difficult. These obstacles motivate a different approach, just as they do
in entanglement verification. Instead of inferring the state, we can instead take a
different measurement whose sole purpose is to distinguish states with different
orders of coherence.
These coherence certifiers are entirely analogous to entanglement witnesses,

although there are significant further complications in the former. Entanglement
may be detected by coherent local operations and classical communications, but its
generation requires operations outside this set92. Coherence, however, is detected
and generated by the same set of operations. This appears to enforce an unfortunate
circular requirement that any measurement to verify the preparation of a coherent
superposition must trust the same operations it is assessing.
This chapter describes a robust high-order coherence certifier that overcomes

the issues both in scalability of measurements and in impossible assumptions of
the naïve approach. It works when even the basis of coherence is not accessible to
measurement, and is demonstrated by an experimental realisation in the motional
state of a trapped ion in collaboration with the group at Imperial. The metric
is provably immune to false positives, and requires only simple functions of a
one-dimensional interference pattern. It is built on prior work out of the Imperial
quantum information theory group34, with significant extra effort required to make
the scheme valid for general quantum measurements that cannot even distinguish
the coherence basis states.

4.1 Quantum coherence

The concept of coherence itself is not unique to quantum mechanics. Classical
coherence is a core component of the wave theory of electromagnetism. Quantum
coherence, on the other hand, allows for single particles to interfere with themselves.
Along with entanglement and quantisation itself, it plays a central role in quantum
effects, from the complete description of the laser to the celebrated Hong–Ou–
Mandel dip53.
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The quantification of this coherence was first explored by noting that two-level
coherence may be characterised by the magnitude of the off-diagonal term in the
density operator, and then generalising this across pairs of orthogonal subspaces
that spanned the entire Hilbert space1. While this initial effort was not considered
as such, the popularity of resource theories22 led to more complete works to fit
coherence into this new framework6,69. The principal additions are the identification
of a set of incoherent operations that cannot increase coherence, analogous to the
local operations and classical communication with entanglement, and a requirement
that a measure is convex under the mixing of states. Both are physically motivated:
one cannot conjure coherence from nothing, nor can they increase it by classically
mixing two states together. Formally, the incoherent operations are the quantum
channels that map the set of incoherent states to itself, and a coherence measure C
is convex if

𝜆 C[�̂�1] + (1 − 𝜆) C[�̂�2] ≥ C[𝜆�̂�1 + (1 − 𝜆)�̂�2], (4.1)

for a mixing parameter 0 ≤ 𝜆 ≤ 1 and all pairs of density operators �̂�1 and �̂�2.
The convexity condition is reminiscent of the triangle inequality, and indeed

distance-based measures are perhaps the most studied of coherence quantifiers
from a theoretical perspective119. The insight is to quantify the coherence of a state
by the minimum distance between it and an incoherent state. This permits a family
of measures, based on the particulars of the distance used. Various works have
investigated the properties of using the relative entropy6,137, the state infidelity120

and both Schatten-𝑝 and ℓ𝑝 matrix norms6,97.
Measures andwitnesses of higher-order coherence aremore complex to construct,

as they target an understanding of a more nuanced view of coherence. As an
illustration, the ℓ1 norm is commonly used to characterise two-level coherence, but
plainly cannot distinguish the number of superposition elements taken alone. More
involved functionals of the off-diagonal terms have been used to construct more
complete quantifiers69,99, but these still require detailed tomographic measurements.
Some of these schemes may be used to construct witnesses, or to use incomplete
data to lower-bound the rank of coherence present99, but these prior methods
make significant assumptions about the properties of the physical system and the
correctness of coherent manipulations. Instead, we turn to interference-pattern
methods, which are well-known as a standard indicator of coherence in two-level
systems.
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4.2 Interference-pattern methods

Ramsey-type experiments have long been a standard tool to verify coherence
between two states. In these, the system is first subjected to some coherent operation
that ought to create a superposition between the basis states. It evolves freely by a
varied amount, then the reverse of the original coherent operation is applied and
the population of one of the two states is measured. Regardless of how faithfully
the coherent operation was performed, evidence of oscillation in the resulting data
is proof that coherence must have existed; an incoherent state would be unable to
interfere with itself during the reversemapping. The simplicity of these experiments
and the minimal amount of data required make them very attractive as a base for
inference of further system properties89. We will consider how they may be used
to classify multilevel coherence.

In a two-level Ramsey experiment, the two states are allowed to evolve relative to
each other for a complete period. For photonic systems, this is equivalent to creating
a path difference between the two basis states and applying a controllable phase shift
to only one of the paths before recombination. Physically this describes a Mach–
Zehnder interferometer. In higher dimensions, one can imagine a generalisation
of such an interferometer as having a different path and phase shift for each basis
state129. This creates an interference pattern over as many variables as there are
dimensions in the Hilbert space. Notably, while any evidence of periodic oscillation
in a two-level Ramsey experiment proves some degree of coherence, one cannot
distinguish true higher-order coherence from an incoherent mixture of pairwise
coherent systems by simply counting the frequency components. The maximal
peak-to-peak visibility does, however, encode some information about the rank of
the coherence of the state; there are threshold values for each rank of coherence
that no lower-ranked coherent state can exceed.

In arbitrarily many dimensions, optimising to find the global maximum becomes
experimentally taxing. It is similar in principle to general state tomographymethods.
To ease the computational burden, one can instead consider only lower-order
moments {𝑀𝑛} of an interference pattern, defined by

𝑀𝑛 (�̂�) =
∫

d𝑤 (𝝓) ⟨𝝓 |�̂� |𝝓⟩𝑛, with |𝝓⟩ = 1√
𝑑

∑︂
𝑗

𝑒−𝑖𝜙𝑗 |𝜙𝑗 ⟩, (4.2)

and some measure𝑤 (𝝓) that acts as a prior. The uniform prior (2𝜋)−𝑑 is appropri-
ate for completely unknown input states of dimension 𝑑 , but others can be used to
reduce the sampling requirements in the discretisation of the integral when approx-

44



Chapter 4 Certification of Higher-Order Coherence

imating it experimentally. Lower-order moments vary less rapidly with respect
to the state, and so require fewer measurements to approximate well. Calculating
lim𝑛→∞𝑀1/𝑛

𝑛 is equivalent to finding the maximal peak-to-peak visibility, which
has the theoretically best distinguishing characteristics. The lower moments still
present the same thresholded structure, but with lower distinguishability129. The
moments also satisfy the convexity property of eq. (4.1), a critical condition for
them to certify coherence in the context of a resource theory. However, retrieving
any of this information requires either that projective measurements of arbitrary
states can be taken accurately, or that individual basis states can be phase-shifted
independently with completely reliable coherent manipulations. These severely
limit the viability of this multi-dimensional approach.

These problems were addressed by prior work out of the Imperial theory group34.
This considers any space whose coherence basis vectors {| 𝑗⟩} can be made to
evolve under the equally spaced Hamiltonian Ĥ ∝ ∑︁

𝑗 𝑗 | 𝑗⟩⟨ 𝑗 |. If necessary, one
can also expand the Hilbert space with intermediate dummy states that are never
populated to achieve the equal separation. This restriction on the required evolution
replaces the projection onto an arbitrary state |𝝓⟩ in eq. (4.2) with a free evolution
Û f(𝜙) = ∑︁

𝑗 𝑒
−𝑖 𝑗𝜙 | 𝑗⟩⟨ 𝑗 | followed by some fixed mapping sequence Ûm, making the

interference pattern one-dimensional. The Hamiltonian naturally occurs as the free
evolution in harmonic-oscillator systems, but can be effectively driven in many
others, including those with degeneracy. For example, in a system of 𝑑 qubits
and the coherence defined over the product of 𝑧-basis eigenstates, the required
evolution can be realised by implementing

Û (𝜙) = R̂1(𝜙)R̂2(2𝜙) · · · R̂𝑑
(︁
2𝑑−1𝜙

)︁
where R̂𝑘 (𝜙) = exp

(︂
𝑖𝜙�̂� (𝑘)

𝑧

)︂
. (4.3)

The operators R̂ are rotations around the individual qubits’ Pauli 𝑍 axes, and the
whole evolution requires only single-qubit operations. This form of evolution is
frequently implemented virtually, in an error-free manner. Control pulses generally
evolve synchronously with the basis-state phase evolution, in which case applying
a constant phase shift to the driving fields is equivalent to separate evolution.
In this simpler system, the interference pattern for projective measurements

onto |𝜒⟩ becomes
𝑝 (𝜙) = ⟨︁

𝜒
|︁|︁ ÛmÛ f(𝜙) �̂� Û†

𝑓 (𝜙)Û
†
m
|︁|︁𝜒⟩︁. (4.4)

With only a single dimension, it is now always feasible to evaluate the entire
interference pattern, so the prior from eq. (4.2) can be replaced with the standard
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uniform distribution, leaving the moments as

𝑀𝑛 =
1

2𝜋

∫ 2𝜋

0
d𝜙 𝑝 (𝜙)𝑛 . (4.5)

These moments alone no longer provide the desired threshold structure; they are all
maximised to unity by taking �̂� = |𝜒⟩⟨𝜒 |, which is completely incoherent. Instead,
Dive et al. 34 showed that the family of ratios of moments

𝑅𝑛 =
𝑀𝑛

𝑀𝑛−1
1

(4.6)

satisfy all the necessary conditions to be certifiers of higher-order coherence:
they are convex in both arguments by the definition of eq. (4.1), and they have
hierarchical threshold values such that the maximal value of 𝑅𝑛 with a 𝑘-coherent
state is strictly less than the maximal value with a (𝑘 +1)-coherent state. All ratios
with 𝑛 > 2 are capable of certifying all ranks of coherence. In practice, we will
only use 𝑅3 for the same experimental reason that lower moments are generally
preferred: they can be well approximated with fewer measurements.

Proving the convexity of the {𝑅𝑛} certifiers over the tested state is largely straight-
forward. The pattern 𝑝 (�̂�, 𝜙) is always between zero and one for all normalised
states, and 𝑝𝑛 is trivially convex for non-negative 𝑝 . The moments𝑀𝑛 are therefore
convex as integration with respect to 𝜙 is linear with respect to the state. Showing
the convexity of 𝑅𝑛 can then be achieved by showing that the second derivative

𝜕2
𝜆𝑅𝑛

(︁
𝜆�̂�1 + (1 − 𝜆)�̂�2

)︁ ≥ 0 for 0 ≤ 𝜆 ≤ 1, (4.7)

since the function is asymptote free. This can be evaluated in terms of themoments—
dropping the function arguments for clarity—to give

𝜕2
𝜆𝑅𝑛 =

1
𝑀𝑛+1

1

[︂
𝑀2

1
(︁
𝜕2
𝜆𝑀𝑛

)︁ − 2(𝑛−1)𝑀1
(︁
𝜕𝜆𝑀1

)︁ (︁
𝜕𝜆𝑀𝑛

)︁ + 𝑛(𝑛−1)𝑀𝑛
(︁
𝜕𝜆𝑀1

)︁2
]︂
, (4.8)

which can be reduced to a trivially positive form

=
𝑛(𝑛 − 1)
𝑀𝑛+1

1

⟨︂
𝑝𝑛−2 [︁𝑝 ⟨𝜕𝜆𝑝⟩ − ⟨𝑝⟩ (︁𝜕𝜆𝑝 )︁ ]︁2

⟩︂
(4.9)

using the notation ⟨𝑓 ⟩ =
∫ 2𝜋

0 d𝜙 𝑓 (𝜙)/(2𝜋), the explicit derivatives

𝜕𝜆𝑀𝑛 = 𝑛
⟨︁
𝑝𝑛−1 (︁𝜕𝜆𝑝 )︁⟩︁ and 𝜕2

𝜆𝑀𝑛 = 𝑛(𝑛 − 1)
⟨︂
𝑝𝑛−2 (︁𝜕𝜆𝑝 )︁2

⟩︂
, (4.10)
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and rearrangements of the form ⟨𝑐⟩ = 𝑐 for interference-phase-independent 𝑐 .
It is generally intractable to analytically calculate the hierarchical threshold

values implied by the convexity of the certifier and the convexity of the set of
𝑘-coherent states. The maximum value of any 𝑅𝑛 for an incoherent state is trivially
one, and Dive et al. 34 showed that the maximal value of 𝑅3 for 2-coherence is
5⁄4 = 1.25 and upper-bounded the maximal value for 3-coherent states to 179⁄96 ≈ 1.86.
They also performed thorough numerical optimisations—I personally replicated
these using the techniques described later—to find empirical upper bounds on the
actual attainable maxima for each coherence rank: 1.25, 1.77, 2.32 and 2.88 were the
largest observed values for 2-, 3-, 4- and 5-coherent states respectively. It is worth
highlighting that 𝑅3 is not a measure of coherence, but a form of witness; it is not
necessarily zero for an incoherent state, and there are incoherent states that exhibit
larger values of 𝑅3 than coherent states. Our intent is to use it to certify balanced
coherent superpositions as being unambiguously of the desired rank, rather than
to produce a perfectly discriminating measure.

The convexity of the certifier with respect to the input state and the convexity of
the sets of 𝑘-coherent states make 𝑅3 a valid witness. However, this is not sufficient
to make the certifier valid in cases where the coherent mapping operation Ûm

cannot be trusted. This is an unfortunate problem for most certifiers, since the
mapping is invariably implemented with the same operations that prepare the
state to be tested, so if the state cannot be prepared coherently—what this certifier
purports to test—then the likelihood of Ûm functioning correctly is also high. It
is therefore imperative that a faulty mapping to the measurement basis cannot
increase the coherence. Dive et al. 34 showed this for the case that a projective
measurement onto the state Ûm |𝜒⟩ was replaced by a probabilistic projection onto
one of a set of states |𝜒𝑗 ⟩ with probability 𝑝𝑗 , with the proof progressing near-
identically to the proof of convexity over the tested state. This means that under
these relatively relaxed assumptions about the measurement, the 𝑅𝑛 certifiers can
never produce false positives when detecting coherence.

These assumptions do not hold in our experimental realisation of choice, though.
We seek to create high-rank coherent states in the motion of a single trapped ion.
The only available measurement is a projective measurement on the electronic state
of the ion, which is an operator of the form |𝑒⟩⟨𝑒 | ⊗ �̂�motion =

∑︁
𝑛 |𝑔, 𝑛⟩⟨𝑔, 𝑛 |. This

cannot be described as a probabilistic projection onto one of a set of states. Instead
we must turn to a more general formalism of quantum measurement to test the
validity and robustness of the 𝑅3 certifier in this system.
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4.3 General measurements

The most general case of operators we will consider are the positive operator-value
measures (povms) introduced in section 2.3. The interference pattern of eq. (4.4) is
generalised to

𝑝 (𝜙) = Tr
[︁
�̂�ÛmÛ f(𝜙) �̂� Û†

f (𝜙)Û
†
m
]︁
. (4.11)

Without loss of generality, we may replace �̂�with a unitary transformation Ûm�̂�Û
†
m

and use the cyclic property of the trace to drop the Ûm terms. Keeping them separate
gives more physical intuition of the process, but is an unnecessary complication for
robustness analysis. The convexity of the certifier with respect to the input state is
easily shown by the same method that was used previously, so we can immediately
progress to calculating the threshold values for different ranks of coherence.

4.3.1 Analytic threshold for 3-coherence

As before, we consider a coherence basis of states {|𝑛⟩} that can be made to evolve
by Û f(𝜙) = ∑︁

𝑛 𝑒
−𝑖𝑛𝜙 |𝑛⟩⟨𝑛 |. The state and the operator are decomposed in terms of

these states as

�̂� =
∑︂
𝑛,𝑚

𝜌𝑛𝑚 |𝑛⟩⟨𝑚 | and �̂� =
∑︂
𝑛,𝑚

𝐴𝑛𝑚 |𝑛⟩⟨𝑚 |, (4.12)

where the coefficients are complex. This form allows the interference pattern
eq. (4.11) to be rewritten as

𝑝 (𝜙) =
∑︂
𝑛

𝜌𝑛𝑛𝐴𝑛𝑛 + 2
∑︂
𝑛>𝑚

|𝜌𝑚𝑛𝐴𝑛𝑚 | cos
(︁(𝑛 −𝑚)𝜙 + 𝜃𝑛𝑚

)︁
, (4.13)

in terms of some angles {𝜃𝑛𝑚} that are the complex phases of the 𝜌𝑚𝑛𝐴𝑛𝑚 terms.
All oscillating cosine terms average to zero over the course of one period. This
makes the lowest moment,𝑀1 independent of the relative phases. Similarly, powers
of the interference pattern can all be rearranged into sums of terms of the form
𝛼 cos(𝛽𝜙 + 𝜃𝑛1,𝑚1 ± 𝜃𝑛2,𝑚2 ± · · · ), with 𝛼 > 0 and integer 𝛽 . The only contributing
terms have 𝛽 = 0, consequently all moments𝑀𝑛 and the certifier𝑅3 have amaximum
when all the {𝜃𝑛𝑚} are zero, i.e. when �̂� and �̂� are real-symmetric matrices. These
are not the only cases when the maximum is reached, but we can proceed under
this assumption without loss of generality.
We can analytically calculate the maximal value that 𝑅3 can achieve for any

2-coherent state. With the convexity trivially proven for the general measurement,
we need only consider pure states. The energy separation of the two populated
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coherence-basis states does not contribute to the value of 𝑅3, and we will label them
|0⟩ and |1⟩. Since the maximum is achieved with a positive real-symmetric density
operator, we may parametrise the input state as

√
𝑥 |0⟩ + √

1 − 𝑥 |1⟩ for 0 ≤ 𝑥 ≤ 1.
Using eq. (4.13), the explicit form of the certifier is

𝑅3 = 𝑥𝐴00 + (1 − 𝑥)𝐴11 +
6𝑥 (1 − 𝑥)𝐴2

01
𝑥𝐴00 + (1 − 𝑥)𝐴11

. (4.14)

In order for the measurement operator to be a valid value in a povm, the two on-
diagonal elements must have a maximal value of one, and the off-diagonal element
must satisfy

𝐴01 ≤ min
{︁
𝐴00𝐴11, (1 −𝐴00) (1 −𝐴11)

}︁
. (4.15)

The symmetry in this constraint represents the choice between using �̂� or 1 − �̂� as
the measurement operator, so we may examine only the branch with 𝐴00 +𝐴11 ≤ 1.
As expected, 𝑅3 is maximised when the coherence between the two basis states
is maximised when the inequality in the constraint is tight, giving 𝐴01 = 𝐴00𝐴11.
Clearly if any of 𝑥 , 𝐴00 or 𝐴11 are zero, the system described is simply incoherent,
and 𝑅3 may attain a maximal value of unity.
The true maximum for 2-coherent states can be found using the method of

Lagrange multipliers with the constraints 0 < {𝑥, 𝐴00, 𝐴11} < 1 and 𝐴00 +𝐴11 ≤ 1.
As only one bound can be tight we need only one slack variable 𝜆, and find

L = 𝑅3 − 𝜆(𝐴00 +𝐴11 − 1) for 𝜆 ≥ 0. (4.16)

The derivative with respect to 𝐴00 is

𝜕L
𝜕𝐴00

= 𝑥
𝑥2𝐴2

00 + 2𝑥 (1 − 𝑥)𝐴00𝐴11 + 7(1 − 𝑥)2𝐴2
11[︁

𝑥𝐴00 + (1 − 𝑥)𝐴11
]︁2 − 𝜆, (4.17)

which is transformed into the derivative with respect to 𝐴11 by the transformations
𝑥 → 1 − 𝑥 and 𝐴00 ↔ 𝐴11. The fraction is strictly positive, so stationary points
require that 𝜆 is as well, in turn forcing the𝐴11 = 1−𝐴00 to satisfy the complement-
ary slackness condition. With all of these conditions, the optimal measurement
operator in the restricted {|0⟩, |1⟩} subspace can be written in matrix form as

�̂� =

(︄
𝐴00

√︁
𝐴00(1 −𝐴00)√︁

𝐴00(1 −𝐴00) 1 −𝐴00

)︄
, (4.18)

which is precisely the form of a rank-1 projectivemeasurement of the state
√
𝐴00 |0⟩+
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√
1 −𝐴00 |1⟩. The problem has now been reduced to what was already shown by

Dive et al. 34 , and the maximal value of 𝑅3 for 2-coherent states remains 5⁄4. Any
state that has a measured value of 𝑅3 above this value must be at least 3-coherent.

4.3.2 Numeric evaluation of thresholds

Expanding this direct analysis beyond 2-coherence proves tricky. Instead, we
use numerical techniques to maximise the certifier over each space of 𝑘-coherent
states and general measurement operators, in order to empirically find the upper
bounds. At a high level, we simply wish to take any general-purpose maximisation
algorithm, such as the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (bfgs)
method96, and have it adjust a random povm value and 𝑘-coherent density operator
to maximise 𝑅3. In practice, this means finding a parametrisation of ℓ elements that
takes a vector in ℝℓ smoothly to the search space. Simply taking the individual
matrix elements is not suitable, as the constraints on the values become highly
non-linear and unsuitable for numerical optimisation. A better way is to craft a
parametrisation that is a surjection of ℝℓ onto the search space; it is permissible—
though somewhat undesired—for multiple vectors to correspond to the same pair of
povm value and density operator, but it is required that all such pairs have at least
one associated parameter vector. If this is achieved, one can use an unconstrained
optimisation routine, which are typically orders of magnitude faster and more
complete than those for problems with non-linear constraints.

Any povm value �̂� can be written as a sum of simple projective measurements as
�̂� =

∑︁
𝑗 𝑎𝑗 |𝜓𝑗 ⟩⟨𝜓𝑗 |, for some scalar constants 0 ≤ {𝑎𝑗 } ≤ 1 and a set of orthonormal

states {|𝜓𝑗 ⟩}. For convenience, we will optimise separately over different numbers
of non-zero 𝑎𝑗 . We approach the parametrisation problem top-down. Each non-
zero 𝑎𝑗 requires a single parameter, and any standard mapping of ℝ → [0, 1] is
suitable for the transformation: logistic transforms, arctangent transforms, and
so on. The {|𝜓𝑗 ⟩} can be chosen by parametrising an orthonormal basis of the
complete space, and selecting the desired number from the basis. This can be done
by first taking an arbitrary basis of the full Hilbert space, and parametrising a single
pure state out of it. The input basis is then limited to cover only the subspace
orthogonal to the chosen state, reducing its dimensionality by one. These steps are
then repeated, each time removing a dimension from the available subspace for
parametrisation by considering only the space orthogonal to all previously selected
states. Once enough states have been found, the parametrisation is complete. The
reduction of the Hilbert space to the orthogonal subspace can be done via the
Gram–Schmidt process, which is suitably deterministic, stable and smooth. A valid
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pure state in an 𝑛-dimensional Hilbert space can be generated by taking 𝑛 − 1
amplitudes 𝑐𝑞 and phases 𝜃𝑞 , and returning the normalised dot product of the vector
(1, 𝑐1𝑒

𝑖𝜃1, 𝑐2𝑒
𝑖𝜃2, . . . ) with the basis. This shows that there is some duplication in

the parametrisation, but in practice it does not pose an issue.
The convexity properties of 𝑅3 should make it unnecessary to draw arbitrary

density matrices for the input states, in favour of using pure states, but for com-
pleteness’ sake we can define a parametrisation. All density matrices that are at
most 𝑘-coherent can be written as a sum ∑︁

𝑗 𝑝𝑗 �̂�𝑗 , where the {𝑝𝑗 } are probabilities
and the individual �̂�𝑗 are arbitrary density matrices each in their own 𝑘-dimensional
subspace spanned by distinct choices of 𝑘 basis states from the coherence basis.
As with many discrete components in smooth optimisations, we handle the choice
of different subspaces by simply repeating the optimisations many times for each
possible set of choices. Density operators are positive semi-definite, and thus have a
Cholesky decomposition �̂� = �̂��̂�

† for a lower-triangular matrix �̂�. We can therefore
parametrise an 𝑛-dimensional density matrix by drawing 𝑛(𝑛 + 1)/2 parameters to
be the magnitudes of the triangular matrix elements and 𝑛(𝑛 − 1)/2 parameters to
be the phases of the off-diagonal elements. Matrices parametrised in this way will
not give unity-trace density operators, and so if �̂�′ is the parametrised triangular
matrix, the output density operator is �̂� = �̂�

′
�̂�
′†/Tr

(︁
�̂�
′
�̂�
′†)︁ .

A parametrisation drawn in this manner is clearly biased. Unlike in random
sampling where it is strongly preferable to draw from the Haar measure to avoid
sampling artefacts, this is not a particular problem for optimisation. The only
consideration is to ensure that the optimisation landscape does not become too
flat for convergence. This is most likely to be an issue if the optimal value is
achieved when certain input parameters must become close to infinite to represent
the desired value in the output space, and the target cost varies slowly with respect
to large changes in the inputs. In this case, this issue does not frequently arise since
the landscape is well featured and the convergence criteria can reliably be reached.

To locate the threshold values with general measurement operators, several thou-
sand optimisations were run in parallel50 in Hilbert spaces of varying dimensions,
taking varying ranks of the measurement operator �̂� and density operators with
various numbers of 𝑘-coherent components on different subspaces. In all cases, the
quasi-Newton method would reduce the total density matrix to a single pure state,
setting all but one component probabilities 𝑝𝑗 to zero, and create a measurement
operator �̂� that was precisely a projective measurement onto the input state. This
is exactly consistent with the expected results, and the threshold values of 𝑅3 were
in total agreement with the prior work34. Further, fixing �̂� to be a higher-rank
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projector by requiring multiple 𝑎𝑗 = 1 always resulted in a maximal value of 𝑅3 that
was lower than before. Specifically, each additional rank of projector reduced the
maximal value achievable by 𝑅3 to the next highest threshold value, for example a
rank-2 projector in a 4-dimensional Hilbert space could never measure more than
3-coherence, no matter if the input state was greater. This is intuitive; adding extra
orthogonal components reduces the distinguishability of states, which is a key
component of the certification.
We have now shown that 𝑅3 is a robust coherence certifier, even for the most

general class of quantum measurements. No matter how imperfectly the mapping
Ûm is implemented, one can never measure a value of 𝑅3 above certain thresholds if
the input state does not exhibit sufficient-rank coherence. The only assumption is
that any error in the mapping sequence is independent of the free-evolution phase
𝜙 being applied. In practice, this is easily satisfied in all systems of interest.

4.4 State-creation sequences

The structure of our coherence-creation experiment is a generalisation of the
standard two-state Ramsey experiment. In the usual form, a single ion is ideally
prepared in the |𝑔, 0⟩ state, although in practice the motion typically has some small
thermal component with mean phonon occupation �̄� ≪ 1. A superposition state
|𝑔, 0⟩ + |𝑔, 1⟩∗ is prepared by first applying a 𝜋/2 pulse on the carrier—creating the
state |𝑔, 0⟩ + |𝑒, 0⟩—followed by a 𝜋 pulse on the first red sideband. This is allowed
to evolve its phase for some time, then subject to the inverse of the state-creation
sequence and measurement. If all operations are implemented perfectly, this shows
a sinusoidal response of the ground-state population to the phase evolution. These
oscillations are maximum amplitude, because the inverse of the creation sequence
maps the target state back to |𝑔, 0⟩ and the only orthogonal state that becomes
populated during the evolution, |𝑔, 0⟩− |𝑔, 1⟩, to |𝑒, 0⟩. There are twomajor problems
preventing the obvious generalisation to create any superposition, evolve it, invert
the creation, and measure: arbitrary state creation is non-trivial, and inversion of
the creation sequence will prove to produce an unsuitable interference pattern.
We will first deal with the creation of arbitrary motional superpositions. The

two-level Ramsey scheme works by exploiting the non-interaction of the first red
sideband with the |𝑔, 0⟩ state. Directly extending this method to create superposi-
tions with higher motional states would require access to the second-order sideband

∗Throughout this chapter we will drop the normalisation factors from state descriptions for
legibility. All states considered are actually of unit norm; there is no use of unnormalised states.
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Figure 4.1—The algorithm used to produce arbitrary motional superpositions41, illustrated creating
|𝑔, 0⟩ + |𝑔, 1⟩ + |𝑔, 2⟩. Grey circles represent state occupation with size proportional to population, and
the green, red and blue arrows respectively represent the carrier, red- and blue-sideband transitions.
(a) Start from the target state. (b) Apply the red-sideband pulse that moves all population of the
highest-occupied motional state |𝑔, 2⟩ into |𝑒, 1⟩, keeping track of the effects on other states. (c)
Apply a carrier pulse to join the electronic states of the elements with the now-largest phonon state
into either |𝑔, 1⟩ or |𝑒, 1⟩. (d) Depending on the previous pulse, apply either the red or blue sideband
to reduce the highest motional state in the system down by a further phonon. (e) Finally, combine
the population into the true initial state |𝑔, 0⟩. The desired creation sequence is the adjoint of the
operation just derived.

transitions and beyond. As described in section 3.3, the ion–laser coupling in typical
trap configurations is insufficient to drive these interactions in a reasonable time
frame without causing significant off-resonant effects on other transitions. We
must use a method that is limited to first-order sidebands, here a minor extension
to previous work7,41 that uses both red and blue sidebands rather than just the red.
First consider the operation in reverse, that is with the system starting in the

target state of 𝑐0 |𝑔, 0⟩ +𝑐1 |𝑔, 1⟩ + · · ·+𝑐𝑛 |𝑔, 𝑛⟩. The aim is to ratchet down the highest
occupied motional state until only |0⟩ remains, then combine all population into
|𝑔, 0⟩ to produce the initial state. The adjoint of the whole operation will then be
the desired creation sequence. This is illustrated in fig. 4.1.

Explicitly, first apply a red-sideband pulse to move all of the population in |𝑔, 𝑛⟩
into the state |𝑒, 𝑛−1⟩. This has an effect on every element in the superposition as
well—except for |𝑔, 0⟩—that must be tracked. The different motion levels oscillate
with their respective coupled state at generally incommensurate frequencies—
approximately 𝜂𝛺

√
𝑛 for the red- and blue-sideband transitions. The total state after

the first pulse is some new 𝑐𝑔,0 |𝑔, 0⟩+𝑐𝑒,0 |𝑒, 0⟩+· · ·+𝑐𝑔, 𝑛−1 |𝑔, 𝑛−1⟩+𝑐𝑒, 𝑛−1 |𝑒, 𝑛−1⟩ for
complex {𝑐}, where now various excited electronic states are involved. The pulse
angle and phase to achieve this with a red-sideband pulse exactly on resonance can
be derived from eq. (3.21) as

𝛺𝑛, 𝑛−1𝑡 = ±2 arctan
|𝑐𝑔,𝑛 |
|𝑐𝑒, 𝑛−1 | and 𝜙 = arg

𝑐𝑔,𝑛

𝑐𝑒, 𝑛−1
+ 𝜋, (4.19)
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and equivalent operations using the carrier and blue-sideband transitions have
similar forms, albeit with modified motional levels. Next combine the populations
of the |𝑔, 𝑛−1⟩ and |𝑒, 𝑛−1⟩ states into one of these two by using the carrier.
Depending on whether the ground or excited electronic state is chosen, apply
either the red or blue sideband to reduce the motional level again. Repeat these
steps until the state reaches some 𝑐′𝑔,0 |𝑔, 0⟩ + 𝑐′𝑒,0 |𝑒, 0⟩, then apply a final carrier
to reach the initial state |𝑔, 0⟩, and take the adjoint of the whole sequence to find
the desired forwards mapping. Creating a motional superposition with a highest
occupied phonon number of 𝑛 requires at most 2𝑛 pulses.

This algorithm permits a family of solutions. There is a branch point each time
the equal-motion population must be consolidated, since it can be pushed into |𝑔⟩
or |𝑒⟩. The arctangent in eq. (4.19) is also a decision point; since the oscillation
frequencies are incommensurate between each pair of coupled states, cycling the
upper-most population before consolidating it affects the populations in lower
motional states, which may allow for shorter pulses elsewhere in the algorithm.
In motion-changing transitions, more excited motional states generally oscillate
faster than lower ones, according to eqs. (3.23) and (3.24). For some cases, especially
with large superpositions, it may be worth spending longer on a fast pulse in
order to save time on slower pulses. The dominant experimental concerns in
choosing the particular solution are minimisation of total pulse time and, to a
slightly lesser extent, limiting the number of different transitions addressed. Most
decoherence channel magnitudes are directly related to the total time: motional
heating, frequency drift, voltage instabilities, and so forth. Using fewer transitions
reduces experimental complexity by minimising the amount of calibration required.
In theory it should be possible to cleanly address all transitions once the lasers are
calibrated to the qubit frequency, and the modulation of the laser is calibrated to
the trap frequency. In practice, though, some components may show non-linear
responses to different target frequencies, and the highest-fidelity operations can
typically only be achieved after each transition separation frequency and coupling
strength are measured individually.
Despite having an infinite number of possible solutions, one can still find the

absolute shortest-time solution with a breadth-first search. First, run the algorithm
once making arbitrary decisions about which qubit state to combine populations
in, and always taking the shortest pulse angle available as a solution to eq. (4.19).
The total time taken by this pulse sequence is an upper bound on the time required.
Now, restart the algorithm treating the solution space as a lazily constructed tree
(in the computer-science, data-structure sense), where the nodes are decision points
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and the branches represent particular choices. Traverse the tree breadth first,
attaching the system state (the current statevector and cumulative pulse time taken)
to each node as it is encountered. If a node requires a pulse time greater than the
upper bound that was previously found, it is rejected and no further solutions to
eq. (4.19) need to be considered at this layer. This strategy of pruning the tree as it
is constructed ensures that the complete, infinite tree never need be built, and the
algorithm will eventually terminate having reached a single leaf node that has the
minimum possible time.
Our experiment originally only calibrated the carrier and red-sideband trans-

itions, to reduce the complexity of setting up the experiment. It was found that
for the particular motional superpositions chosen, the absolute variation of the
optimal superposition-creation sequence from the initial bound—chosen to use
only the carrier and red-sideband transitions—was on the order of 1% of the total
length. Since this was a very minor improvement, the preference to use only two
different transitions generally won out. The explicit forms of the sequences used in
the experimental realisation are given later in tables 4.1 to 4.3, along with details of
the measurement-mapping sequences that are derived in the next section.

4.5 Measurement-mapping sequences

While section 4.3 showed that imperfect measurements cannot produce false posit-
ives, one must still choose a suitable mapping sequence Ûm for a given input state
to gain the greatest chance of registering a true positive result. To illustrate, no
matter how faithfully the mapping and measurement �̂� = |0⟩⟨0| is implemented,
it is entirely incoherent and its resulting interference pattern will always be con-
stant. From the numerical work of the previous section, if the input state |𝜓 ⟩ is an
equal superposition of coherence-basis elements, the aim is always to implement a
measurement operator �̂� that is a rank-1 projector |𝜓 ⟩⟨𝜓 |. The standard two-state
Ramsey experiment achieves this ideal measurement mapping for its input state
|𝑔, 0⟩ + |𝑔, 1⟩ by a simple inversion of the preparation sequence. In fact, if the avail-
able measurement in a system is a projection onto exactly the initial state (before
�̂� is created), inverting the creation sequence is generally sufficient to achieve a
high-fidelity mapping for that state.

This simplicity does not extend to the ion-trap measurement |𝑒⟩⟨𝑒 | ⊗ �̂�motion for
general states. Measurement of the electronic state in the ion trap does not just
measure population in the perfect initial state, but also other motional states. The
superposition-creation algorithm described in section 4.4 is specifically constructed
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to map |𝑔, 0⟩ to the target state, but its effect on states orthogonal to the target
state is not considered at all. In all probability, the orthogonal states that become
populated during the phase evolution will be mapped back to have some population
in the ground electronic state, and some in the excited. The final measurement
of the electronic state is therefore not able to completely distinguish the different
cases, and the visibility is limited. Visibility not a direct component of the certifier
𝑅3, but a lack of it does qualitatively indicate that the maximal achievable 𝑅3 value
for this pattern, even implemented perfectly, will be lower than it could be.

While the ion-trap measurement will always fail to distinguish different motional
levels, it can be turned into a proxy for a perfect projectivemeasurement by choosing
Ûm to map the target state into |𝑒⟩, and other states to |𝑔⟩. Let us take an experiment
to create |𝑔, 0⟩ + |𝑔, 1⟩ + |𝑔, 2⟩ and verify 3-coherence as an explicit example. We
need only consider the space of states that can become populated as a result of the
phase evolution. This leads to a small set of conditions for Ûm:

Ûm
(︁|𝑔, 0⟩ + |𝑔, 1⟩ + |𝑔, 2⟩)︁ ∝ |𝑒, 𝜆1⟩,

Ûm
(︁|𝑔, 0⟩ − 2|𝑔, 1⟩ + |𝑔, 2⟩)︁ ∝ |𝑔, 𝜆2⟩, and

Ûm
(︁|𝑔, 0⟩ − |𝑔, 2⟩)︁ ∝ |𝑔, 𝜆3⟩.

(4.20)

States with more than two phonons do not need to be considered in this mapping,
since they do not become populated as part of the state creation or evolution. The
choice of the particular other orthogonal states is unimportant, provided the states
chosen span the same space as {|𝑔, 0⟩, |𝑔, 1⟩, |𝑔, 2⟩}; by linearity of Ûm, any state in
this space orthogonal to the target is a linear combination of the two other states
chosen, and so will also be purely in the electronic ground state.

Any choice of the motional states {|𝜆𝑗 ⟩}—no matter their amount of coherence—
is suitable, and equally efficient if the mapping is implemented ideally; the motion is
completely traced out and plays no further part. We still must attempt to minimise
the total time of this pulse sequence, though, to avoid the effects of the same deco-
herence processes described in section 4.4. Frequency and phases drifts will cause
the manipulations to be imperfectly applied, with longer experimental times leading
to a higher likelihood of failing to create or verify the coherence. Motional heating
from the trap electrodes or from sympathetic heating from other motional modes
cause the phonon numbers to spread out during the operation, naturally destroying
the coherence. As with entanglement witnesses, the more these processes occur,
and the greater the distance of the actual created state from the state the mapping
sequence was designed for, the less concrete information is likely to be obtained
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from the method.
The coupled conditions of eq. (4.20) do not appear to permit an analytic solution.

Suitable sequences can still be found by numerical methods. The scheme here is
far simpler than the complicated parametrisation used in section 4.3 to find the
threshold values of 𝑅3. We start with a list of possible sequences of transitions,
such as:

• red, carrier, red, carrier, red;

• carrier, red, blue, carrier, blue;

• blue, red, carrier, blue, red.

Each possibility is optimised for separately. The choices can be of different lengths;
empirically, it seems that for a good mapping one requires at least one more
pulse than the corresponding state-creation sequence, and these typically alternate
between a sideband and the carrier.
For each pulse sequence, each contained pulse is parametrised by two values:

the length of time it is applied for, and its relative phase offset. An appropriate loss
function is the average population that will end up in the opposite electronic state
to where it should. Explicitly, for a target motional superposition state |𝜓 ⟩ and its
orthogonal states {|𝜒𝑗 ⟩}, the minimisation problem is

min
𝒕, 𝝓

Tr
[︂ (︁ |𝑔⟩⟨𝑔 | ⊗ �̂�motion

)︁
Ûm |𝜓 ⟩⟨𝜓 |Û

†
m+

∑︂
𝑗

(︁ |𝑒⟩⟨𝑒 | ⊗ �̂�motion
)︁
Ûm |𝜒𝑗 ⟩⟨𝜒𝑗 |Û

†
m

]︂
, (4.21)

where
Ûm(𝒕, 𝝓) = Ûm,𝑛 (𝑡𝑛, 𝜙𝑛) · · · Ûm,2(𝑡2, 𝜙2)Ûm,1(𝑡1, 𝜙1), (4.22)

and the individual {Ûm, 𝑗 } are the evolution operators of each transition.
For any realistic experimental realisation, it is not necessary that the loss func-

tion exactly reaches zero. I somewhat arbitrarily used a cut-off of requiring the
outside-target-state probability to be less than 10−10, and counted any optimisation
result within this bound as a success. Each considered sequence of transitions was
minimised with a quasi-Newton method equipped with an analytic calculation of
the Jacobian of the loss function.∗ Separate runs were started from random initial
parameter vectors, repeating the process for about three hours per sequence. For
each target state considered in this work, there were many possible sequences with
the same number of transitions used, and within each, several possible values of
the parameter vector that qualified as a success. The best sequence depends, as

∗This is easily, if tediously, calculated from eqs. (4.21) and (4.22) using derivatives of eq. (3.21).
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before, on the particulars of the experiment, but in general it is sensible to choose
the sequences with the least total duration, and potentially only use the carrier and
one other sideband to reduce calibration requirements.
The exact sequences used in our experimental realisation of this certifier are

given in tables 4.1 to 4.3, along with the parameters of the state creation. These
are also available in a more machine-readable format70. In the tables, the pulse
length is the time apply the pulse, scaled such that a value of 1 is the time taken
to completely exchange the populations of the lowest-coupled motional levels in
the transition: |𝑔, 0⟩ ↔ |𝑒, 0⟩ for the carrier, |𝑒, 0⟩ ↔ |𝑔, 1⟩ for the red sideband
and |𝑔, 0⟩ ↔ |𝑒, 1⟩ for the blue sideband. Note that the pulse lengths on the carrier
have significantly less effect on the total duration than those on a sideband, since
the power of sideband transitions is suppressed by a factor of the Lamb–Dicke
parameter, typically held at around 1⁄10. The phase offset has the same meaning as
it does in eq. (3.21), namely that the driving field phase be offset by this amount
relative to where it would have been had it oscillated freely on resonance since the
start of the experiment. The phase offsets are not cumulative; each is relative to
the start of the experiment.

We were not able to determine a rigorous structure to the pulse sequences found,
but there are some features of note. The optimiser strongly preferred sequences
that alternate between applying a sideband and applying the carrier. Its first pulse
was very frequently the inverse of the last pulse in the state-preparation sequence,
which reduces the maximum number of phonons in the system by one. This
pulse also populates the majority of the states with lower motional occupation and
both a ground-state and excited-state ion. Qualitatively, this allows subsequent
pulses to effect more interactions because different states. When the optimiser uses
sideband pulses after the initial drive, it often seems to choose a length that would
cause the largest motional state to do a complete population cycle with the greater
unpopulated state it is coupled to. For example, if the highest motional level at
an intermediate point was |𝑒, 1⟩, as in tables 4.1 and 4.2, the applied red sideband
would tend to have a duration of

√
2 ≈ 1.41, which transfers the population of |𝑒, 1⟩

into |𝑔, 2⟩ and then back again, leaving the total phonon number unchanged. The
other coupled states do not share the same period, so this appears to be a method
by which the optimiser modifies the relative populations in each level, without
increasing the maximal excitation.
Beyond these observations, the structure of the optimised pulse sequences ap-

pears relatively opaque. The actual motional states that the optimiser maps the
different elements to do not have any clear significance. As an example, when
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State creation Measurement mapping

Transition carrier red carrier red red carrier red carrier red
Pulse length 0.60 0.80 0.74 0.71 0.71 0.44 1.41 0.54 1.41
Phase offset /𝜋 0 −0.50 0 −0.50 0 −0.66 −0.83 −0.87 −0.41

Table 4.1—Pulse sequences for creation and measurement mapping of target state
(︁ |𝑔, 1⟩ + |𝑔, 2⟩)︁/√2.

This is the first non-trivial two-element motional state; superpositions of |0⟩ and either |1⟩ or |2⟩
can be created with only two pulses, and an optimal mapping sequence is just the inverse of the
creation. The state here requires a stricter mapping sequence to produce a full-visibility interference
pattern. The meanings of the rows are explained in more detail in table 4.2.

State creation Measurement mapping

carrier red carrier red red carrier red carrier red
Pulse length 0.50 0.70 0.73 0.71 0.71 0.48 1.42 1.58 0.71
Phase offset /𝜋 0 −0.50 1.00 0.50 0 −0.28 −0.25 −0.86 −0.47

Table 4.2—Pulse sequence for creation and measurement mapping of target state
(︁|𝑔, 0⟩ + |𝑔, 1⟩ +

|𝑔, 2⟩)︁/√3. The pulse length is the duration of the pulse, scaled such that a value of 1 would com-
pletely exchange the populations of the coupled pair of states with the lowest motional occupation.
The given phase is applied as an offset relative to where the driving field would have been, had it
been oscillating freely since the beginning of the experiment.

State creation

Transition carrier red carrier red carrier red
Pulse length 0.51 0.55 0.96 0.57 0.84 0.58
Phase offset /𝜋 0 −0.50 −1.00 0.50 0 −0.50

Measurement mapping

Transition red carrier blue carrier red carrier red carrier red
Pulse length 2.89 1.47 1.15 3.02 2.31 4.69 2.31 0.72 0.58
Phase offset /𝜋 0 −0.16 −0.41 −0.53 0.45 0.79 −0.32 −0.13 0.76

Table 4.3—Pulse sequences for creation and measurement mapping of target state
(︁ |𝑔, 0⟩ + |𝑔, 1⟩ +

|𝑔, 2⟩ + |𝑔, 3⟩)︁/2. This four-element superposition state involved optimising over 18 parameters in
an optimisation landscape with many loss-function minima. The long durations of some of the
pulses in the measurement-mapping component suggest that there may have been solutions with
less time requirements to be found, had we had more time to run optimisations on the compute
clusters. The meanings of the rows are explained in more detail in table 4.2.
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performing the measurement mapping for the state |𝑔, 0⟩ + |𝑔, 1⟩ + |𝑔, 2⟩ using the
sequence given in table 4.2, the different motional superpositions {|𝜆𝑗 ⟩} in eq. (4.20)
are

|𝜆1⟩ ≈ |0⟩,
|𝜆2⟩ ≈ (0.43+0.11𝑖) |0⟩ + 0.75|1⟩ + (0.44−0.23𝑖) |2⟩, and
|𝜆3⟩ ≈ 0.72|0⟩ − (0.26+0.25𝑖) |1⟩ + (0.05+0.59𝑖) |2⟩,

(4.23)

up to global-phase equivalence. It is interesting that the target state is mapped back
to the initial motional state, especially because the complete state is not the initial
state, but is instead |𝑒, 0⟩. For the purposes of certification of coherence, however,
we do not need to understand the inner machinations of the optimiser, but simply
to use its mappings to implement a perfect projective measurement.

4.6 Statistics of the certifier

One final, major obstacle to the robustness of the 𝑅3 certifier is the impact of
imperfect measurement statistics on the interference pattern. So far, the theory
work has assumed that the value of 𝑅3 can be determined accurately, and within this
assumption it cannot return a false positive for higher-order coherence. This does
not survive contact with the real world, however. When measuring an interference
pattern, one samples each point by taking a series of click/no-click shots and using
their count to estimate the probability of an underlying binomial distribution.
This provides two mechanisms by which an interference pattern can appear to
exhibit coherence that is not present: one in the sampling statistics of individual
distributions, the other in the approximation of the continuous interference pattern
by a series of discrete points.
As an extreme example, consider the case the state �̂� = |0⟩⟨0| + |1⟩⟨1|. This is

completely incoherent and its interference pattern should be a constant value of 1⁄2,
but misfortune in the binomial sampling could show false evidence of oscillation.
One must account for the standard errors of the measurements when calculating
the uncertainty in the value of 𝑅3, but the ratio of moments of the interference
pattern is highly non-linear, meaning the standard physicists’ workhorse

𝛼𝑓 ≈
⌜⎷∑︂

𝑗

|︁|︁|︁|︁ 𝜕𝑓𝜕𝑥𝑗
|︁|︁|︁|︁2𝛼2

𝑥𝑗 , (4.24)

is not valid. Further, the non-linearity introduces a systematic upwards bias in the
most natural estimators of 𝑅3, which must be corrected.
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We must first begin with the basics: accurately assessing the uncertainty in
individual points of the interference pattern. Each datum is modelled by a bino-
mial distribution with some exactly underlying probability 𝜇𝑗 and a number of
shots 𝑛 taken. The probability of excitation of point 𝑗 is then a random variate
𝑃𝑗 ∼ B(𝑛, 𝜇𝑗 )/𝑛 from which our estimates 𝑝𝑗 are drawn. The unbiased maximum-
likelihood estimator of 𝜇𝑗 is very naturally to define 𝑝𝑗 to be the number of successes
observed divided by the number of shots. Continuing this, the first statistical mo-
ments of the binomial distribution have unbiased estimators (symbols with hats)21

E
[︁(𝑃𝑗 − 𝜇𝑗 )1]︁ → 𝑝𝑗 − �̂�𝑗 = 0 (mean)

E
[︁(𝑃𝑗 − 𝜇𝑗 )2]︁ → �̂�2

𝑗 =
𝑝𝑗 (1 − 𝑝𝑗 )
𝑛 − 1 (variance)

E
[︁(𝑃𝑗 − 𝜇𝑗 )3]︁ → �̂�𝑗 =

𝑝𝑗 (1 − 𝑝𝑗 ) (1 − 2𝑝𝑗 )
(𝑛 − 1) (𝑛 − 2) (skewness),

(4.25)

where E[𝑋 ] is the expectation of a random variable 𝑋 .
One should not mistake an estimator of the standard deviation of a non-normal

statistical distribution for the best estimator of one’s confidence in itsmean, however.
This is commonly done for the binomial distribution, leading to a zero-width interval
if zero successes or failures are measured in the finite number of samples, which
is in part necessary to avoid a confidence interval that includes invalid values. A
more appropriate estimation is the Wilson score interval136. This is also based on a
normal approximation, but using a slightly different approach, given a number of
observed successes 𝑘 and some desired 𝑧 score. The standard estimator answers the
question if the distribution has a mean of 𝑝𝑗 , what is the expected variance? while the
Wilson score answers for what range of 𝜇𝑗 would 𝑘 successes be within the expected
interval? Explicitly, the bounds—without a continuity correction—are the solutions
to the quadratic equation(︃

1 + 𝑧2

𝑛

)︃
𝑝2
𝑗,w −

(︃
2𝑝𝑗 + 𝑧2

𝑛

)︃
𝑝𝑗,w + (︁

𝑝2
𝑗

)︁
= 0, (4.26)

where the quantities in brackets are known. This interval is not centred on 𝑝𝑗 , but
is asymmetric; this represents the greater variance that binomial variables with
mean close to 1⁄2 possess. All results involving binomial variables presented in this
thesis use this method for estimating the uncertainty.
We now move to the larger question of estimating 𝑅3 from real experimental

data. The integrals in the measurement must be discretised. They vary sufficiently
smoothly that a trapezium rule over the 𝐽 different points in the pattern is appro-
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priate. This is

1
2𝜋

∫ 2𝜋

0
𝑓 (𝑥) 𝑑𝑥 ≈

𝐽−1∑︂
𝑗=0

𝑤𝑗 𝑓
(︂ 2𝜋 𝑗
𝐽 − 1

)︂
, where𝑤𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1

2(𝐽−1) 𝑗 = 0 or 𝑗 = 𝐽 − 1
1

𝐽−1 all other 𝑗 ,
(4.27)

leading to the observed values of 𝑅3 being drawn from a random variable

𝑅3 ∼
∑︁

𝑗 𝑤𝑗𝑃
3
𝑗(︁∑︁

𝑗 𝑤𝑗𝑃𝑗
)︁2 . (4.28)

As alluded to previously, the expectation of this estimator is systematically biased
away from the true value that would be obtained if the 𝜇𝑗 were knownwith certainty.
We can analytically evaluate the expectation E[𝑅3] to determine its bias. The

expectation from each point is E[𝑃𝑗 ] = E
[︁
𝜇𝑗 + (𝑃𝑗 − 𝜇𝑗 )

]︁
. This unusual form is to

permit a Taylor expansion around the binomial means in terms of E
[︁(𝑃𝑗 − 𝜇𝑗 )𝑛

]︁
,

which have known unbiased estimators in eq. (4.25). The expansion proceeds, up
to terms of third order, as

E[𝑅3] = E
[︃(︂∑︂

𝑗

𝑤𝑗𝑃
3
𝑗

)︂ (︂∑︂
𝑗

𝑤𝑗𝑃𝑗
)︂−2

]︃
≈ �̃�3

�̃�2
1
+ 1
�̃�2

1

∑︂
𝑗

(︄
3𝑤𝑗

(︂
𝜇𝑗 − 2

�̃�1
𝜇2
𝑗 +

�̃�3

�̃�2
1

)︂
E
[︁(𝑃𝑗 − 𝜇𝑗 )2]︁

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
bias term

+𝑤𝑗

(︂
1 − 6

�̃�2
1
𝑤𝑗𝜇𝑗 + 9

�̃�2
1
𝑤2
𝑗 𝜇

2
𝑗 − 4�̃�3

�̃�3
1
𝑤2
𝑗

)︂
E
[︁(𝑃𝑗 − 𝜇𝑗 )3]︁ )︄,

(4.29)
where �̃�1 =

∑︁
𝑗 𝑤𝑗𝜇𝑗 and �̃�3 =

∑︁
𝑗 𝑤𝑗𝜇

3
𝑗 . The actual target of the estimator is the

quantity �̃�3/�̃�2
1. We align our estimator of 𝑅3 to the centre of the distribution by

subtracting the marked bias term.
This new estimator is now fair, in that it is as likely to return a value that is too

great as it is to return one that is too small. We still must calculate our estimate of
the uncertainty in the value of 𝑅3, however. In this case, I found from a multitude
of Monte-Carlo testing that the low-order propagation of uncertainty formula of
eq. (4.24) produces perfectly acceptable results. This is somewhat expected; direct
measurements of 𝑅3 appear to be well approximated by a normal distribution, and
there is no covariance between the separate 𝑝𝑗 . We must then evaluate the partial
derivatives. Writing the unbiased estimator as 𝑅3, est = 𝑅3, direct − ∑︁

𝑗 𝑧2, 𝑗 − ∑︁
𝑗 𝑧3, 𝑗 ,

where the {𝑧𝑛,𝑗 } are the terms in eq. (4.29) that include E
[︁(𝑃𝑗 − 𝜇𝑗 )𝑛

]︁
, the derivatives
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Figure 4.2—Probability density functions for the
biased and unbiased estimators of 𝑅3 using a 31-
point trapezium rule with 100 shots per point,
scaled to have a maximal value of one. The pdfs
(crosses) are derived from one million Monte-
Carlo simulations of measuring a pattern whose
true 𝑅3 is 47⁄27, with both estimators using the same
set of data. Each pdf is overlaid on a Gaussian ap-
proximation (lines) using the estimated values of
mean and uncertainty. It is clear that the naïve
estimator systematically overestimates.
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for the second-order correction terms, and
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for the third-order corrections.
The validity of these estimators are tested by Monte-Carlo simulation. We

simulate the measurement of an interference pattern generated by an idealised
realisation of the superposition state |0⟩ + |1⟩ + |2⟩, including a perfect projective
measurement onto this exact target state. The resulting value of the 𝑅3 metric
should be exactly 47⁄27. The estimated value and uncertainty in 𝑅3 are calculated
for one million different attempts, for both the original and unbiased forms of the
estimators, each using the same set attempts. The integral discretisation was done
with a 31-point trapezium rule, and each point of the pattern was sampled one
hundred times. From this, one can derive the probability density function (pdf) of
the results by binning the measured values into a histogram of suitable resolution.
The results of these simulations are shown in fig. 4.2. It is clear that the naïve
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estimator has a quantifiable bias, and our modifications remove this. Each pdf is
shown in comparison to a normal distribution, centred on the mean of the measured
values of 𝑅3, showing the validity of the normal approximation to the uncertainty
calculation. On very close inspection, there appears to be a very small skewness in
the distribution of the estimated values, some of which is to be expected from the
truncation of the Taylor expansion when creating the estimator.

With the exception of trifling details such as a functioning, controllable ion trap,
we now have all the ingredients in place to create arbitrary motional superpositions,
evolve them, and verify that we successfully created higher-order coherence.

4.7 Experimental realisation

Over the course of my studies, the experimental ion-trapping group at Imperial
built a new linear radio-frequency trap with a single-segment bladed design. The
details of this are given in the thesis of Ollie Corfield28—I was not involved in its
construction. This section describes the creation of several-element superpositions
in the motional state of a single trapped ion, and their subsequent verification of
coherence rank using the methods of the previous sections. I was not part of the
lab team implementing the experiment, but I was responsible for interpreting the
data; I performed the fitting of the blue-sideband Rabi experiment and of the most
likely 3-coherent state to the final results.
The particular ion was 40Ca+, with the two qubit states encoded as an optical

qubit with |𝑔⟩ = 42𝑆 1
2 ,𝑚𝑗=− 1

2
and |𝑒⟩ = 32𝐷 5

2 ,𝑚𝑗=− 1
2
. This was addressed by a single

sub-kHz-linewidth diode laser with a wavelength of approximately 729 nm giving
a Rabi frequency 𝛺 ≈ 90 kHz · 2𝜋 on the carrier, and readout by the fluorescence
measurement shown in fig. 3.2. The initial-state (|𝑔, 0⟩) preparation sequence has a
probability of success of 98(2)% through Doppler and then sideband cooling, while
the measurement fidelity is reliably above 99%. In terms of the system Hamiltonian
from eq. (3.15), the qubit-separation frequency is 𝜔𝑒𝑔 ≈ 411 THz · 2𝜋 and the
motional frequency is 𝜔𝑧 ≈ 1.1 MHz · 2𝜋 , giving a Lamb–Dicke parameter 𝜂 ≈ 0.09.
This is well within the Lamb–Dicke regime, and as such the higher-order sidebands
are not reasonably available. With the sideband transitions being suppressed by
around an order of magnitude compared to the carrier, there is a sizeable ac Stark
effect shifting the frequencies of these transitions. To mitigate this to first order, an
additional compensation pulse is applied far off-resonantly, halfway between the
carrier and the opposite-colour sideband.
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4.7.1 State creation

We attempted to create three different motional superpositions, and verify the
coherence rank of each. The three states were |1⟩ + |2⟩ for a 2-coherent state, then
|0⟩ + |1⟩ + |2⟩ for a 3-coherent state and |0⟩ + |1⟩ + |2⟩ + |3⟩ for 4-coherence. For
2-coherence, |1⟩ + |2⟩ was chosen as it is the first state that requires the non-trivial
state-creation and measurement-mapping sequences to generate it. Note that the
relative phases of the superposition elements are important in both parts of the
process. We kept all elements the same phase for simplicity in describing them.

After the state creation, one can take an incoherent measure of the populations of
each state as a sanity check. All population should be in the electronic ground state
of the ion, and this can be tested directly with the standard ion-trap measurement.
Due to the nature of the superposition-creation algorithm, having all population
in |𝑔⟩ is a very good indication that the algorithm was successful; miscalibrated
frequencies, pulse powers or phase drift would all cause appreciable population to
remain in |𝑒⟩ at the completion of the algorithm.
We can also make an estimate of the populations in each motional level with

a Rabi-type experiment. The superposition state is evolved by applying the blue
sideband for a varying amount of time. Each motional level |𝑔, 𝑛⟩ will undergo
oscillation between the ground and excited electronic states at a rate proportional
to

√
𝑛 + 1 inside the Lamb–Dicke regime. Scanning the length of the pulse builds

up a pattern such as fig. 4.3 for the three-element superposition.
One can approximately determine the populations of the different basis states

from this pattern. Ideally, we would take a Fourier transform of the data and
examine the amplitudes of the different components to find the populations. This is
difficult in practice, however. Since the component oscillation frequencies are 1,

√
2,√

3, and so on, any discrete Fourier transform will not have bins centred on these
values, and there is significant leakage between the frequencies unless the scan
can last far longer. The coherence time of the motion, while not directly measured,
limits this scan from being taken much beyond the 1ms shown in fig. 4.3.
Instead, we can estimate the populations by a maximum-likelihood method. In

essence, one parametrises a model, then finds the values for which the resulting
interference pattern would have the greatest probability of returning the observed
data. This likelihood is the product

ℓ (𝒙) =
∏︂
𝑗

Pr
[︁
B
(︁
𝑛, 𝑝𝑗 (𝒙)

)︁
= 𝑛𝑗

]︁
, (4.32)
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Figure 4.3—Excited-state population of state |𝑔, 0⟩ + |𝑔, 1⟩ + |𝑔, 2⟩ while being driven by the blue
sideband. The data points (purple crosses) are shown with their Wilson binomial 1-𝜎 confidence
interval. The pattern from a state that best fit the data (blue line) was found by maximum-likelihood
estimation, and its 95% confidence region (blue shaded region) by bootstrapping the measured
data 14 000 times. The fit accounted for the Rabi frequency, detuning, motional dephasing rate,
basis-state populations up to |3⟩ inclusively, and correlations between directly coupled elements.
The populations in |𝑔, 0⟩, |𝑔, 1⟩ and |𝑔, 2⟩ were 33(2)%, 30(2)% and 33(2)%, respectively, with 4.7(14)%
elsewhere. All appreciable undesired population was in the |𝑒⟩ excited qubit state; the motional
state |3⟩ was included in the fit, but found to have a population consistent with zero with a standard
error of 9 × 10−3 percentage points.

where 𝑛𝑗 is the number of times the measurement returned |𝑒⟩ at a given point, and
𝑝𝑗 is the simulated probability at that point for a parameter vector 𝒙 . The maximum
of this cannot generally be calculated analytically. For numeric evaluation, it is
generally advisable to use the log-likelihood ln(ℓ) to avoid floating-point underflow.
Doing so has no effect on the location of any maxima as the natural logarithm
is a monotonically strictly increasing function over this domain. Any standard
optimisation routine can then be used to maximise the quantity.

The parameters to be fit to the data here were: the base Rabi frequency of the side-
band; a detuning from the actual transition frequency; the basis-state populations
of |𝑔, 𝑛⟩ and |𝑒, 𝑛⟩, with 𝑛 up to one phonon larger than the maximum expected;
and phase correlations between pairs of states coupled by the blue sideband. In
addition, we account for potential motional dephasing by simulating the Lindblad
master equation of eq. (2.17) with an additional jump operator �̂� =

√
𝛾�̂�†�̂� for some

rate 𝛾 included in the fit. Physically this additional term is a proxy for the effect of
a drifting laser phase. We satisfy the requirement that this operator is bounded by
truncating the Hilbert space considered to only the required motional levels. There
are no processes being modelled that would cause the population to move outside
this subspace.

Performing maximum-likelihood estimation alone does not give any indication
of the level of confidence in the fitted values. The simplest method for obtaining an
estimate of this is by bootstrapping. In this, the sample of measured data points are
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Target state in |𝑔⟩ 𝜂𝛺/(2𝜋 kHz) 𝛿/(2𝜋 kHz) 𝛾/(2𝜋 kHz)
|1⟩ + |2⟩ 8.39(3) 1.3(5) 0.11(2)

|0⟩ + |1⟩ + |2⟩ 6.95(3) 2.6(2) 0.14(3)
|0⟩ + |1⟩ + |2⟩ + |3⟩ 7.52(2) 1.5(3) 0.22(4)

Table 4.4—Values and uncertainties in the fit parameters after bootstrapping the measured data
for each of the three target states. The modified Rabi frequency 𝜂𝛺 is the coupling strength to the
lowest motional state on the blue sideband at zero detuning. Each detuning 𝛿 is on the order of 1⁄500
of the sideband separation frequency, but closer in size to the Rabi frequency than is desirable. The
dephasing strength 𝛾 is relatively small compared to all other parameters.

Target state in |𝑔⟩ Estimated population in basis state

|𝑔, 0⟩ |𝑔, 1⟩ |𝑔, 2⟩ |𝑔, 3⟩ |𝑔, 4⟩ |𝑒⟩
|1⟩ + |2⟩ 0.052(14) 0.546(14) 0.383(13) 0.000(5) 0.018(9)

|0⟩ + |1⟩ + |2⟩ 0.33(2) 0.31(2) 0.33(2) 0.000(12) 0.036(11)
|0⟩ + |1⟩ + |2⟩ + |3⟩ 0.29(2) 0.25(2) 0.21(2) 0.223(15) 0.000(11) 0.026(11)

Table 4.5—State populations, not complex amplitudes, for individual quanta of motion in the ground
qubit state, and the total population in the excited qubit state. The values and their uncertainties
were found by maximum-likelihood estimation while bootstrapping the measured data. Each state
shows some deviation from the ideal, but not excessive. In all cases, the population in motional
states larger than those in the superposition was statistically consistent with zero.

repeatedly resampled to gain knowledge of how the fit responds to variations in the
sampled values. For each new sample, the same maximum-likelihood estimation
is performed many times, to give an estimate of the extent of the uncertainty.
There are multiple possible methods for performing the resampling, depending
on the type of problem. The most straightforward is simply to select a new set
of 𝑛 points from the measured data with replacement, such that some points are
sampled more than once and some not at all. Alternatively, one can consider a
parametrised resampling, where the maximum-likelihood fit is taken to be the
underlying pattern, and each new set of data is generated by drawing each point
from the binomial distribution implied by the pattern. In the analysis here, I used
both of these methods for 180 cpu-hours per method per state, which resulted in
approximately 14 000 realisations for each. The 95% confidence intervals for the
true pattern from the two methods, as shown by the light region in fig. 4.3 for
|𝑔, 0⟩ + |𝑔, 1⟩ + |𝑔, 2⟩, were within statistical noise of each other.
The measured parameters for the three states are shown in tables 4.4 and 4.5.

While the Rabi frequencies are consistent with the measured values from calibration,
the detunings exceed what was expected. It is plausible that the simulation model
was partially underparametrised, such as by failing to account for inefficiencies in
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the measurement process or off-resonant excitations from the ac Stark effect, and
that this led to better fits with a larger detuning. Maximum-likelihood estimation is,
after all, only as good as its model. In this case, the significantly larger uncertainties
on the detuning suggest that it had relatively little impact on the model, and
there is still good reason to believe the other parameters with much lower relative
uncertainties.

4.7.2 Coherence certification

With the motional states created and sanity-checked, all that is left is to attempt to
verify the rank of the coherence that has been created. The phase evolution Û f of
eq. (4.11) is implemented virtually in this system; each transition driven after the
period of the phase evolution is offset by an amount 𝑛𝜙 , where 𝑛 is the difference
in the number of phonons between the coupled ground and excited qubit states: 0
for the carrier, −1 for the red sideband and 1 for the blue sideband. This is exactly
equivalent to evolution under the free Hamiltonian Ĥ ∝ ∑︁

𝑗 𝑗 | 𝑗⟩⟨ 𝑗 | if only the
motional states are considered.

For the certification scheme, it is vital that no evolution-phase-dependent error
enters the measurement-mapping operation Ûm. This is a core assumption of the
derivations in the threshold values of the certifier. It is possible in theory for a
completely incoherent state |0⟩ to be falsely detected as 2-coherent if the mapping
sequence somehow projected it onto the state cos𝜙 |0⟩ + sin𝜙 |1⟩. While this is an
extreme example, we still must consider any ways that our system could introduce
any phase-dependent error.
The virtual phase advancement on the surface looks plausible, but since the

resulting pattern must be periodic, this would be trivially detectable; if the measured
interference patterns did not appear to have a period of 2𝜋 , it would be clear
that some catastrophic failure of the control systems had occurred. This phase
advancement is applied in the arbitrary-waveform generator in the same manner as
all other phase offsets, and consequently any introduced error is independent of the
magnitude of the shift. More detail on how the pulses are actually synthesised is
presented in the theses from the experimental group28. In fact, applying the phase
advancement virtually has an advantage in that it is a constant-time operation, so
there is no chance that run-time-dependent processes will enter as each shot has
precisely the same duration.

Beyond this, it is possible that some drifting parameters in the lab could have a
time-dependent effect on measurement efficiency or the mapping sequence. With
all the cooling and measurement cycles and at 400 shots per point, the final data
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collection period for each experiment was around ten minutes. This was in part
limited by the length of time the system calibration was valid for; beyond this, and
the trap parameters may have drifted far enough that the fidelity of the coherent
manipulations was compromised. To avoid any possibility that the environment had
an effect that appeared to be phase-dependent, the different shots of the experiment
were interleaved. 24 different phase-advancement values were taken, and each was
repeated 400 times. Rather than running every shot for one point, and moving
on sequentially, a random order of the 24 points was generated, and then this
order was cycled through taking one hundred shots per raster. Limitations in the
control system made it impractical to randomise the order for each individual shot.
Regardless, this has the approximate effect of converting any time-dependent noise
from the environment into a white-noise process, which is safely handled by the
coherence certifier.
A final possibility is for a systematic mis-set of the driving frequencies. If the

qubit frequency is mis-set from the average such that the red- and blue-sideband
transitions are addressed at different detunings, any phase advancement on them
could in principle introduce a phase-dependent error. This could arise from an
imperfect compensation of the ac Stark effect, or by calibrating both sideband
frequencies using only a measurement of the qubit frequency and the trap frequency.
In this experiment, the two sideband locations were calibrated independently, which
alleviates the majority of this concern. The drift of the laser frequency with respect
to the sideband frequency over the course of an entire experiment was estimated
by pre- and post-calibration to be less than 𝛿/𝛺 = 0.15, where the time-dependent
components of this will have been converted to incoherent noise by the shot
randomisation described previously.
With all this in hand, fig. 4.4 shows the measured interference patterns and

ideal models for the two target states |𝑔, 1⟩ + |𝑔, 2⟩ and |𝑔, 0⟩ + |𝑔, 1⟩ + |𝑔, 2⟩. Of
these, the two-element superposition had a measured value of 𝑅3 = 1.090(12)
after the bias correction, which is above the threshold of 1 officially needed to
certify 2-coherence with this metric, though of course the evidence of oscillation
alone is sufficient in this case. As expected, the certifier value does not reach
1.25, the maximum achievable with a 2-coherent state, due to imperfections in the
experimental environment.
The three-element superposition, on the other hand, did reach above this, to

𝑅3 = 1.54(2). Achieving this value certifies that the state created must have
contained higher-order coherence; to reiterate, it is impossible for a state without
genuine 3-coherence to exhibit a value of 𝑅3 larger than 1.25. For this state, the
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Figure 4.4—Measured interference patterns (purple crosses) for the two- and three-element motional
superpositions indicated, using the measurement-mapping sequences described in tables 4.1 and 4.2.
Each point was repeated 400 times, and the Wilson 1-𝜎 confidence intervals are indicated with error
bars though these small enough to be difficult to see. The models (green lines) are the theoretically
optimal interference patterns, had there been no experimental error or noise. The measured certifiers
were greater than the level needed to certify 2-coherence (1) and 3-coherence (1.25) respectively.

Figure 4.5—As in fig. 4.4, but for the four-element
superposition indicated with the measurement-
mapping sequence described in table 4.3. The
value of the certifier here, 𝑅3 = 1.35(3), does not
reach the level of 179⁄96 ≈ 1.86 that is necessary
to unambiguously certify 4-coherence, but it is
at least 3-coherent. The interference pattern of
the 3-coherent state that best approximates both
this and the state-population data is also shown
(dashed blue line), where the thinner, lighter line
within is its 1-𝜎 Wilson interval. The unconvin-
cing fit is evidence that the state likely was 4-
coherent, but the certifier test was inconclusive.
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optimised mapping pulses are absolutely necessary to this certification; without
them, the certifier would have a theoretical maximal value of 𝑅3 ≈ 0.92. This is
significantly below the threshold needed to certify, in part because the peak-to-peak
visibility of the pattern could not have exceeded 0.68.

Attempting to stretch the trap—which was not specifically designed to have any
particular resilience to motional decoherence—to its limits, we also pursued the
four-element superposition |𝑔, 0⟩ + |𝑔, 1⟩ + |𝑔, 2⟩ + |𝑔, 3⟩. The resulting interference
pattern is shown in fig. 4.5. This state did not cross the threshold of 1.86 necessary
to certify 4-coherence, but its value of 𝑅3 = 1.35(3) was still larger than 1.25,
unequivocally still certifying it as 3-coherent.

In all three cases, the observed interference patterns were of lower total visibility
than they theoretically could have been. Figures 4.4 and 4.5 also show the ideal
interference patterns that could have been measured, had the state preparation and
measurement mapping been implemented without any experiment error. For the
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two-element superposition, this would have been the threshold value 1.25, while
for the three-element superposition it would have been 47⁄27 ≈ 1.74. This is not the
absolute maximum achievable for a 3-coherent state, but well above the threshold.
The currently known maximum is 1.77, which is exhibited by a superposition with
the central element weighted slightly higher than the outer two34. The four-element
superposition could potentially have reached 145⁄64 ≈ 2.27.
It is natural that the highest possible values of 𝑅3 were not observed in this

real experiment. The fits of the state populations in table 4.5 show that it is likely
the state creation was not exact, and one naturally expects that the measurement-
mapping operations, being slightly more complex, would similarly be implemented
with some inaccuracies. Frequency drift, off-resonant excitation and thermalisation
of the motion all likely played some part in the reduction of fidelity. Of course,
some of these processes of sufficient amplitude will destroy higher order coherence.
This is where the resilience of the certifier to always fail safe is most important;
even in the presence of experimental imperfections, the observed values of the
certifier still guarantee that genuine 3-coherence was created in the three- and
four-element superposition tests.

For the four-element superposition, which failed to reach a value of 𝑅3 sufficient
to classify it as 4-coherent, we can extend the analysis a little further. Using the
coherent-state parametrisations and maximum-likelihood techniques introduced
in sections 4.3.2 and 4.7.1 we can optimise to find the 3-coherent state that is most
likely to have produced the observed data. We do not need to limit ourselves to
the final interference pattern in this case; we can also use the blue-sideband-scan
data generated during the initial tests of the superposition creation. The results of
this best state are plotted as the blue dashed line in fig. 4.5. This does not produce
a particularly convincing fit; it is similar towards the centre of the pattern, but
has significantly reduced visibility overall. It is perhaps likely, then, that the state
created was in fact 4-coherent, but the 𝑅3 certifier returned only an inconclusive
result. This is not a failure of the certifier, but more a further example of its fail-safe
nature; it will either describe a state as certainly 𝑘-coherent or not offer an opinion.
If one is prepared to relax the burden of proof from beyond reasonable doubt to a
mere balance of probability, the maximum-likelihood estimation offers additional
information, without further experimental cost.
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4.8 Conclusion

Multilevel coherence is a resource, and despite its complex definitions in terms of
density operators, its presence can be certified by one-dimensional interference
pattern experiments. This remains true when the coherence basis itself is not
accessible to direct measurement, such as for the motional states of a single trapped
ion. Even in cases where the certifier test is inconclusive, one can supplement the
analysis with maximum-likelihood-estimation techniques to indicate whether it
is probable that the observed interference pattern was caused by a state with the
particular rank of coherence. The certifier is robust against false-positives, and is
massively more practical to implement than complete state tomography, especially
in cases with a poor measurement operation.
We have shown that previous interference-pattern methods for coherence cer-

tification can be extended to the case of these non-ideal measurement operators,
analytically for low ranks of coherence and numerically beyond that. We have
performed a detailed analysis of the statistical properties of any measurement of
this certifier in an experimental setting, and shown how the bias in the standard
estimator of it can be reduced. A scheme for optimal measurement mappings was
demonstrated that converted low-visibility patterns into ones that could be used
to certify high-rank coherence, and these were demonstrated in a real quantum
system in collaboration with the experimental group at Imperial. Two states that
unambiguously exhibited properties of 3-coherence were created and verified in the
motional state of a single trapped ion. We also provided some additional analysis
that indicate higher coherence, when certification is inconclusive.

The intricacies of high-order coherence remain little understood, but this chapter
has introduced a new method of probing them. The methods described here are
generally applicable far beyond trapped ions. All that is required is a simple
measurement and a phase evolution that is very naturally available to any system
containing a quantum harmonic oscillator component, such as optomechanical
oscillators. This opens up the physical systems that can be used to investigate
higher order coherence. Going further, the construction of quantum computers
requires incredibly detailed control over large-scale superpositions. A method for
generating the necessary phase advancement on an arbitrary number of qubits
using only local operations was sketched out, allowing these interference-pattern
methods to be used in these situations.
Of course, the other major requirement in quantum computing is the creation

of entanglement that is robust to variations in the environment. We now add a
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second ion to our theoretical trap, and move to discussing how we can generate a
Bell state between them that will not suffer as heavily from environment noise.
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We described the Mølmer–Sørensen scheme for generating entanglement in trapped
ions in section 3.4. Its development at the time presented a large advance for
quantum logic gates in this medium, relaxing the previous requirement25 that the
coupled motional modes were cooled perfectly to the their ground state115, although
it originally came at the penalty of adiabaticity. The more strongly coupled version
of the interaction described by eq. (3.28) was developed shortly after116, and is
now by far the more common method for applying the gate30,40,48,139. This trades
off increased sensitivity to fluctuations in the control frequencies for significantly
faster gate operation. Faster gates mean less time in which the quantum systems
can decohere, so in practice this exchange is always worthwhile. Still, it is entirely
valid to ask can we reduce the sensitivity to errors?

This is of course not a new question. The most obvious method of increasing
fidelity is to improve the quality of the controlling electronics and drive fields, and to
reduce any environmental effects that could cause frequency shifts. Technology on
this front is always improving, allowing experimentalists to move from the earliest
fidelities of around 80%45, to 99% shortly after8, to the most modern realisations
in excess of 99.9%40. Tighter control tolerances are not solely responsible. Recent
implementations of these trapped-ion gates all use some additional techniques to
eke out more speed, such as addressing multiple motional modes simultaneously2,23

and driving Raman transitions closer to resonance to increase the transfer rate4.
One can attain even greater fidelity by accepting that noise will always be present,

and minimising not just its source but its ability to affect the system. The classical
spin-echo technique in nuclear magnetic resonance44 is as applicable to modern
quantum information processors as it was then, whether in qubit idle periods or
during gates, now under the name dynamical decoupling 127. These techniques
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are typically applied in microwave-driven gates12,49,122. Beyond this, one can
apply optimal-control techniques to shape control fields, to suppress undesired
effects at various points in the gate application. There are a variety of different
parametrisations for this, from simple smoothing of the pulse windows8 to more
complex schemes based on piecewise-constant functions107, or amplitude42,110,132

or phase modulation80,140.
Such error-mitigation techniques continue to grow in importance. All proposals

to enlarge ion-trap quantum computers inevitably increase the complexity of the
systems, whether this is by shuttling ions between modules68 or linking traps
with photonic interconnects84,118. This leads to greater physical differences and
larger quantities of bulk optics over which the control fields must be kept coherent,
while attempts to miniaturise traps necessarily lead to greater heating rates and
neighbour interactions via crosstalk19.
This chapter presents an investigation from early in my degree into the applic-

ability of Fourier-series multi-tone parametrisations of the Mølmer–Sørensen gate
for suppression of mis-sets in the qubit frequencies. The scheme is applicable
to any physical encoding of the qubits, whether they are driven by microwaves,
a single laser targeting a dipole-forbidden transition, or two lasers in a Raman
configuration. It requires no additional fields, only shaping of the existing control;
the only necessity over the original implementation of the Mølmer–Sørensen inter-
action103 is an arbitrary waveform generator. We consider only the case of gates
that do not increase the required peak power, consistent with realistic experimental
considerations. This method, in theory, can improve the infidelity scaling of the
gate with respect to the frequency error, given a sufficient number of tones in the
control fields. While we had originally hoped to extend a previous experimental
collaboration with the group at the University of Sussex132, they had moved on to
other priorities and we were unable to test it experimentally.

5.1 Model

The Hamiltonian of the trapped-ion system was given in eq. (3.15), under the
critical assumption that all qubits had the same frequency. We cannot necessarily
assume this in the general case. Instead, let us consider the case of two co-trapped
ions, whose frequencies are described by {𝜔𝑒𝑔, 𝑖}. In an ideal situation for ions
of the same species, the frequencies should be identical for some known 𝜔𝑒𝑔. It
is more convenient, then, to think of the two ions as having qubit frequencies
slightly detuned from this ideal case, by some small amount

{︁
𝛿 ( 𝑗)𝑒𝑔

}︁
. We then can
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Figure 5.1—The effects of different frequency off-
sets on the operation of the Mølmer–Sørensen
gate. This is more complete version of fig. 3.4, tak-
ing into account the new error terms introduced
in eq. (5.1). Thick black lines are the ideal energy
levels targeted by the driving, while thin lines are
the true structure. The qubit errors 𝛿avg and 𝛿spl
cause the two-photon process to be off-resonant
for some initial states, while a motional error 𝛿𝑧
causes a shift from the ideal virtual level.
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more explicitly encode the symmetry of the problem under the exchange of ions
by working with a single quantity, the frequency splitting 𝛿spl =

(︁
𝛿 (1)𝑒𝑔 − 𝛿 (2)𝑒𝑔

)︁/2
between the two qubits.
This prompts some modifications to the interaction Hamiltonian of eq. (3.19),

principally that the sum over the individual qubit operators is no longer the simple
𝑒−𝑖𝜔𝑒𝑔𝑡

∑︁
𝑗 �̂�

( 𝑗)
+ , but must take into account the separate frequencies on each ion.

Further, as we will be moving to shape the control fields, we replace the simple laser
driving with an abstract profile 𝑓 (𝑡). Doing so allows the possibility that the driving
will be defined with respect to miscalibrations of the average qubit frequency and
motional frequency as well; we introduce new factors of 𝛿avg =

(︁
𝛿 (1)𝑒𝑔 + 𝛿 (2)𝑒𝑔

)︁/2 and
𝛿𝑧 respectively to account for these. This leaves a new interaction Hamiltonian of

Ĥint/ℏ = 𝑓 (𝑡)𝑒𝑖 (𝜔𝑒𝑔+𝛿avg)𝑡
(︂
𝑒𝑖𝛿spl𝑡 �̂� (1)

+ + 𝑒−𝑖𝛿spl𝑡 �̂� (2)
+

)︂
D̂

(︂
𝑖𝜂𝑒𝑖 (𝜔𝑚+𝛿𝑚)𝑡

)︂
+ H.c., (5.1)

where D̂(𝛼) = exp
(︁
𝛼�̂�† − 𝛼∗�̂�

)︁
is the displacement operator from eq. (2.6). The

effects of these on the energy levels for a standard Mølmer–Sørensen gate targeted
exactly on 𝜔𝑒𝑔 and 𝜔𝑧 is shown in fig. 5.1.

In practice, one must always apply control fields that are close to resonant with
particular sidebands to drive meaningful dynamics. We rewrite the most general
field 𝑓 (𝑡) = 𝑓 (𝑡)𝑒−𝑖𝜔𝑠𝑡 , re-using the sideband selection frequency 𝜔𝑠 = 𝜔𝑒𝑔 + 𝑛𝜔𝑧

discussed in section 3.3.2. The remaining time dynamics in the 𝑓 (𝑡) are assumed
to be slow compared to the sideband separation, and the selection frequency is
deliberately defined in terms of the calibration parameters 𝜔𝑒𝑔 and 𝜔𝑧 , rather
than the true values of the average and the motion frequency, to mimic a real
experimental setup. The Mølmer–Sørensen interaction is achieved by applying two
component driving fields: 𝑓𝑟 = 𝑓

∗ on the red sideband, and 𝑓𝑏 = 𝑓 on the blue. This
leads to a complete description of the Mølmer–Sørensen Hamiltonian within the
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Lamb–Dicke approximation, in terms of all of these frequency errors, as

Ĥms = −𝜂𝑓 (𝑡)𝑒𝑖𝛿𝑧𝑡 �̂�† ·
⎛⎜⎜⎜⎜⎜⎜⎝

cos
(︁(𝛿avg + 𝛿spl)𝑡

)︁
�̂� (1)
𝑦

+ sin
(︁(𝛿avg + 𝛿spl)𝑡

)︁
�̂� (1)
𝑥

+ cos
(︁(𝛿avg − 𝛿spl)𝑡

)︁
�̂� (2)
𝑦

+ sin
(︁(𝛿avg − 𝛿spl)𝑡

)︁
�̂� (2)
𝑥

⎞⎟⎟⎟⎟⎟⎟⎠
+ H.c.. (5.2)

In the absence of all errors, this degrades to an equivalent form to eq. (3.26) with
generalised driving.

Each error is largely caused by a separate miscalibration or experimental imper-
fection. Qubit-splitting errors can arise when the chosen encoding is magnetic-field
sensitive, and there is a field gradient along the axis of the trap. A miscalibration
of the average frequency of the qubits can arise from a drift in the laser caused
by inadequate locking, or from a global magnetic field drift across all qubits. The
motional frequency can often be affected by fluctuations on trap endcap electrode
voltages, but it can also be difficult to calibrate this precisely, due to the ac Stark
effect from the nearby stronger carrier transition when probing sidebands.

The errors have different effects on the gate operation. An error in the motional
frequency affects the red and blue sidebands equally but in opposite directions,
meaning that the two-photon red–blue process of the gate is on-resonant overall for
all states. This does, however, mean that the desired detuning from the sidebands,
the 𝜖 in eq. (3.28), is not what is expected, and consequently both the applied Rabi
frequency and the gate time will be incorrect, leading to residual qubit–motion
entanglement at the completion of the pulses, and an incorrect amount of spin-
dependent phase advancement. Both of these will strongly affect the quantum
information stored in the qubits; in quantum computing applications, the coherence
time of the motion is significantly shorter than the coherence time of the qubits.
The two qubit frequencies play a separate role. Qualitatively, from fig. 5.1, it is

clear that a nonzero error in the qubit average will cause the two-photon process
from an initial state of |𝑔𝑔⟩ to be off-resonant; the energy separation between |𝑔𝑔⟩
and |𝑒𝑒⟩ is different the sum of the two photon energies by a factor of 2𝛿avg. From
this same starting state, the splitting frequency will cause an additional decoherence
of the qubits by making them distinguishable during the operation, removing some
of the path interference that cancels out the motional dependence in the ideal gate,
but will not alone cause the complete process to be off-resonant.
It is important to note, however, that the |𝑔𝑔⟩ ↔ |𝑒𝑒⟩ process is only part of

the story. For complete gate operation, one must also consider the coupling of
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|𝑔𝑒⟩ ↔ |𝑒𝑔⟩. In this, the driven processes do not use a photon from each sideband,
but two photons from the same sideband, and thus of the same frequency. This
means that the splitting error now causes off-resonant effects, while the average
error shifts the virtual levels targeted by the red–red and blue–blue processes by
different amounts. Formally, for a physical gate Û that is attempting to implement
some target dynamics Û tg, we are concerned with the average gate fidelity

𝐹 =
1
𝐽

∑︂
𝑗

Tr
(︂
Û
|︁|︁ 𝑗⟩︁⟨︁ 𝑗 |︁|︁ Û† Û tg

|︁|︁ 𝑗⟩︁⟨︁ 𝑗 |︁|︁ Û†
tg

)︂
=

1
𝐽

∑︂
𝑗

|︁|︁|︁⟨︁ 𝑗 |︁|︁ Û†
tg Û

|︁|︁ 𝑗⟩︁|︁|︁|︁2, (5.3)

where the 𝐽 different {| 𝑗⟩} form a complete basis. In practice, we would always
precalculate the Û tg | 𝑗⟩ terms only once, to avoid an extra matrix–vector product in
an inner loop.

It is clear from eq. (5.2) that no amount of shaping 𝑓𝑏 will actually remove terms
from the Hamiltonian. Instead, we seek a pulse design that reduces errors in the
effective Hamiltonian that is applied at the gate time. Unfortunately, with Pauli
operators with time-dependent amplitudes now featured, the Magnus-expansion
approach used to analytically calculate the dynamics in section 3.4 no longer
terminates. The aperiodicity of the system also prevents the frequently used Floquet
approach from being valid, and we need to turn to numerics to reasonably simulate
the dynamics.

We shall consider a multi-tone parametrisation, which is conceptually similar to
several Mølmer–Sørensen gates being applied simultaneously, with each detuned
by an integer multiple of the base case. For a driving field with 𝑛 tones, we write
the blue-sideband driving profile as

𝑓 (𝑡) = 𝜖𝑛
4

𝑛∑︂
𝑘=1

𝑐𝑛,𝑘𝑒
−𝑖𝑘𝜖𝑛𝑡 , (5.4)

for nondimensional complex numbers {𝑐𝑛,𝑘}, and a known base detuning 𝜖𝑛 . The
scaling factor of 2𝜖𝑛 is chosen such that 𝑐1,1 = 1 reproduces the original, single-tone
Mølmer–Sørensen gate. The value of the detuning determines the gate time, and
it is generally limited by the available driving-field power; a larger value requires
more power in order to reduce the gate time as 𝜏𝑛 = 2𝜋/𝜖𝑛 .

5.2 Optimisation

One very natural figure of merit for a gate is its average fidelity, as defined in
eq. (5.3). As a minor implementation detail, numerical optimisers are traditionally
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implemented as minimisers rather than maximisers—one person’s 𝑓 is another’s −𝑓 ,
making a distinction redundant—which motivates targeting the infidelity 𝐼 = 1 − 𝐹

instead. This is also a physically sound choice; we generally expect infidelity to
never reach zero, but its order of magnitude plays a key role in whether quantum
error correction is possible64.

However, in the absence of errors, and assuming the Lamb–Dicke regime holds
perfectly—more on that in the next chapter—the Mølmer–Sørensen gate has zero
infidelity. This is no longer the case once errors are present, but we cannot optimise
for a specific value of the error; if we knew it, we would mostly be able to recalib-
rate the system to remove it. In reality, we will have some modelled probability
distribution of the errors 𝜔 (𝜹) and we care about reducing the expectation of the
infidelity over all possible errors:

E[𝐼 ] = 1 − 1
𝐽

∑︂
𝑗

∫
d𝜹 𝜔 (𝜹)

|︁|︁|︁⟨︁ 𝑗 |︁|︁ Û†
tg Û (𝜹)

|︁|︁ 𝑗⟩︁|︁|︁|︁2. (5.5)

In practice, we can precalculate the factors of Û†
tg | 𝑗⟩ to save matrix multiplica-

tions. An arbitrary time-evolution solver is needed to calculate Û (𝜹) | 𝑗⟩, but such
mathematics are well studied96. In this case, we defer to pre-written libraries61,128.

We must be careful that any comparison to the existing gate is fair. Many of the
decoherence processes can be reduced by applying more laser power to perform
the gate faster. This is easy for theorists to say, but impractical advice in reality;
there is only so much power available. We need to impose a requirement that the
peak power output of the driving field, max𝑡 |𝑓𝑛 (𝑡) |2, does not exceed the base gate.
This structure can be used to optimise the gate under any error model for the

detunings. The work presented here focusses only on the two forms of qubit error,
and leaves the motional error. The time-evolution operator for eq. (5.2) can be
calculated with a terminating Magnus series (see eq. (2.16)), and multi-tone scheme
has already been shown to be highly useful in these situations, in which the remnant
undesired terms can be cancelled order by order42,110,132. We will illustrate the
method using normally distributed qubit-average and -splitting errors, as this is
among the most likely model for errors with imperfect calibration.

5.2.1 Parametrisation

As in the optimisations in chapter 4, we seek some parametrisation that will allow
us to use an unconstrained optimisation routine. The complex numbers {𝑐𝑗 } are all
very naturally parametrised by a real amplitude and phase. With arbitrary shapes,
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the detuning also needs to vary, but it cannot do so freely without allowing the
power to grow unbounded. Instead, we fix 𝜖 to fix the peak-power output at the
maximal allowed value, reducing the number of parameters by one.
The scaling required for an arbitrary set of {𝑐𝑗 } has no closed-form solution. It

is possible in theory to scan through the duration of the gate and locate various
maxima, but with the number of these extrema not known for any given parameter
vector—there could be fewer than expected—it can be fiddly to ensure that the
global maximum was found. A more elegant method is to recast the problem. All
extrema coincide with the locations of the roots of the derivative of the power

𝜕

𝜕𝑡

|︁|︁𝑓𝑛 (𝑡)|︁|︁2 = 𝜖2
𝑛

16
∑︂
𝑗,𝑘

𝑐𝑛,𝑘𝑐
∗
𝑛,𝑗𝑒

𝑖 ( 𝑗−𝑘)𝜖𝑛𝑡 . (5.6)

The exponentials can be treated as powers of a variable 𝑧 = 𝑒𝑖𝜖𝑛𝑡 , and so multiplying
through by 𝑧𝑛−1 and relabelling indices leads to a polynomial[︄
𝑛−2∑︂
𝑘=0

(︄
𝑘+1∑︂
𝑗=1

𝑐𝑗𝑐
∗
𝑗−𝑘+𝑛−1

)︄
(𝑘 − 𝑛 + 1)𝑧𝑘

]︄
+

[︄
2𝑛−2∑︂
𝑘=𝑛

(︄
𝑛∑︂

𝑗=𝑘−𝑛+2
𝑐𝑗𝑐

∗
𝑗−𝑘+𝑛−1

)︄
(𝑘 − 𝑛 + 1)𝑧𝑘

]︄
= 0.

(5.7)
All 𝑛 complex roots of this 𝑧ℓ can be found by well-established eigenvalue methods
on the companion matrix of the polynomial96. The roots are related to the temporal
locations of the extrema 𝑡ℓ,𝑚 by

𝜖𝑛𝑡ℓ,𝑚 = arg(𝑧ℓ) − 𝑖 ln|𝑧ℓ | + 2𝜋𝑚. (5.8)

The only roots are interest are in the first period and are real, so𝑚 = 0 and |𝑧ℓ | = 1,
and the peak power comes from testing the 2𝑛 − 2 or fewer resulting abscissae.
With this scaling in place, we have attained a smooth surjection from ℝℓ onto the
search space, and can now use the same bfgs method as in section 4.3.2.

5.2.2 Reduction of dimensionality

The state-space dimension for two qubits is four, and so the natural evaluation
of the average gate fidelity requires numerically calculating four solutions to the
Schrödinger equation. This can be reduced by more mathematically examining the
effects of different detunings on the system. We first note that the multidimensional
normal distribution centred on zero that we are using as an errormodel is completely
symmetric under any sign flips; all choices of the signs in 𝜔 (±𝛿1,±𝛿2) give the
same result. Further, the integral over all possible detunings in the figure of merit
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Table 5.1—Frame transformations showing the
equivalence of various combinations of errors and
starting states. The second and third columns
show pairs of basis states and error configurations
that will exhibit identical dynamics to |𝑔𝑔⟩ under
a Hamiltonian with an average-frequency shift of
𝛿avg and a frequency split of 𝛿spl. Note that any
single Pauli-𝑌 flip exchanges 𝛿avg and 𝛿spl, and a
flip of the first qubit introduces negatives on both.

V̂ V̂ |𝑔𝑔⟩ V̂Ĥms (𝛿avg, 𝛿spl)V̂†

�̂� |𝑔𝑔⟩ Ĥms (𝛿avg, 𝛿spl)
�̂� (1)
𝑦 −𝑖 |𝑒𝑔⟩ Ĥms (−𝛿spl,−𝛿avg)

�̂� (2)
𝑦 −𝑖 |𝑔𝑒⟩ Ĥms (𝛿spl, 𝛿avg)

�̂� (1)
𝑦 ⊗ �̂� (2)

𝑦 −|𝑒𝑒⟩ Ĥms (−𝛿avg,−𝛿spl)

eq. (5.5) ensures that both positive and negative detunings will be accounted for,
and have equal weight.

In the discussion surrounding fig. 5.1, we argued qualitatively that the effects of
an average-frequency shift on the state |𝑔𝑔⟩ would be similar to those of a splitting
of the qubit frequencies on a singly excited state such as |𝑔𝑒⟩. These effects are in
fact quantitatively equal. Further, there is a symmetry within each pair of states,
in that the |𝑔𝑔⟩ ↔ |𝑒𝑒⟩ transition will have very closely related Bell-state-creation
fidelities for both initial states in the basis.
Formally, we introduce an explicit parametrisation of the Hamiltonian eq. (5.2)

as Ĥms(𝛿avg, 𝛿spl). It was shown in eq. (2.10) that a time-independent unitary frame
transformation V̂ transforms the Hamiltonian Ĥ → Ĥ′

= V̂ĤV̂†, and similar for
the time-evolution operator Û . Now, consider the average gate fidelity calculated
over the natural basis set

{︁ |𝑔𝑔⟩, |𝑔𝑒⟩, |𝑒𝑔⟩, |𝑒𝑒⟩}︁. The four possible combinations of
applying or not applying the operators

{︁
�̂� (1)
𝑦 , �̂� (2)

𝑦

}︁
transform the state |𝑔𝑔⟩ into

one of the other four basis states, and the evolution is then equivalent to some
exchange of the errors. All four equivalences are shown in table 5.1.
Under the assumption that the weight function is symmetrical around the zero

point of each error individually, one only need evolve the states |𝑔𝑔⟩ and |𝑔𝑒⟩ to
calculate the loss function eq. (5.5) exactly. The gate fidelity for the other two basis
states averaged over the symmetric error probability function will be equal to these
two. This halves the number of time evolutions that must be carried out, which is
the core inner routine in the calculation. In general the weighted gate fidelity will
differ between |𝑔𝑔⟩ and |𝑔𝑒⟩ if the standard deviations of the error models for the
two parameters are different.
These similarities also show that a driving function optimised to reduce the

effects of average-frequency shifts for all starting states will also be optimised for
non-degenerate qubit levels. This does not extend as far as motional detunings,
however. There is no similarity transformation between the qubit basis states that
relates one of the other errors to a motional error.
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5.2.3 Quadrature

The only remnant issue in the optimisation is the evaluation of the integral over all
possible detunings in eq. (5.5). The time integrations of the Hamiltonian necessary
to calculate Û (𝜹) are expensive, and it is desirable to reduce the number of eval-
uations of the integrand. Numerically this becomes trickier when the integral is
multidimensional, as in this case.

Standard one-dimensional integration is often carried out by approximating the
integrand in the integration region by a low-order polynomial. The calculation is
performed as ∫ 𝑏

𝑎
d𝑥 𝑓 (𝑥) ≈

𝑛∑︂
𝑗=1

𝑤𝑗 𝑓 (𝑥𝑗 ) for 𝑥𝑗 = 𝑎 + ( 𝑗 − 1)𝑏 − 𝑎

𝑛 − 1 , (5.9)

for some weights {𝑤𝑗 } that are independent of the integrand. They are found by
defining a related function 𝑓 ′(𝑥) = ∑︁

𝑗 𝑓 (𝑥𝑗 )ℓ𝑗 (𝑥) that is the Lagrange interpolation
of 𝑓 , where the {ℓ𝑗 } are (𝑛−1)th-degree polynomials that satisfy ℓ𝑗 (𝑥𝑘) = 𝛿𝑗𝑘 for
abscissae on the grid. These are given by ℓ𝑗 (𝑥) = ∏︁

𝑘≠ 𝑗 (𝑥 − 𝑥𝑘)/(𝑥𝑗 − 𝑥𝑘), with the
numerator providing a multiplicative factor of zero for grid points other than 𝑥𝑗

and the scaling fixed to ensure ℓ𝑗 (𝑥𝑗 ) = 1. The function 𝑓 ′ can then be integrated
analytically, since the 𝑓 (𝑥𝑗 ) are known; the weights in eq. (5.9) are𝑤𝑗 =

∫ 𝑏

𝑎
d𝑥 ℓ𝑗 (𝑥).

This is a description of the Newton–Cotes family of quadrature rules, of which
the trapezium rule (linear) and Simpson’s rule (quadratic) are the most well known.
It is not usually worth moving to higher degrees of polynomial interpolation, which
require more evaluations of the integrand but do not typically significantly improve
error rates for non-polynomial functions. Instead, one may use the trapezium rule
and subdivide the region recursively until some tolerance threshold is reached.
This immediately poses two problems: the region here is infinite; and the number
of function evaluations is not predictable, making it more difficult to allocate
computational resources.

Sticking, for now, to one dimension, it is possible to solve both of these problems,
and achieve higher degree rules with the same number of points. Newton–Cotes
rules require 𝑛 function evaluations on an evenly spaced grid to reach an inter-
polation with a polynomial of degree 𝑛 − 1. However, there are more degrees of
freedom available to construct higher-order rules. We previously assumed that the
grid points {𝑥𝑗 } would be evenly spaced, but this is not necessary. In fact, by a
suitable choice of locations and quadrature weights, we can use only 𝑛 function
evaluations to achieve a degree of 2𝑛 − 1 and account for a weight function within
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Table 5.2—Commonly used weight functions and
associated regions of integration used with Gaus-
sian quadrature96. The regions and natural weight
functions are related, but analytic variable trans-
formations in the integrands can convert any finite
region to any other; the form of the weight is more
important than the scaling.

Weighting 𝜔 (𝑥) Region 𝛺 Polynomial set

1 [−1, 1] Legendre
1/
√

1 + 𝑥2 [−1, 1] Chebyshev
(1 − 𝑥)𝛼 (1 + 𝑥)𝛽 [−1, 1] Jacobi
𝑥𝛼 exp(−𝑥) [0,∞) Laguerre
exp

(︁−𝑥2)︁ (−∞,∞) Hermite

the integrand itself. This is Gaussian quadrature.
We begin by considering the set of smooth square-integrable real-valued func-

tions as a Hilbert space under a family of inner products defined by

⟨𝑓 , 𝑔⟩𝜔,𝛺 =
∫
𝛺

d𝑥 𝜔 (𝑥) 𝑓 (𝑥)𝑔(𝑥), (5.10)

for some region 𝛺 and a weighting function 𝜔 (𝑥) that is positive everywhere. One
can construct a series of orthogonal polynomials {𝑃𝑘}, defined by ⟨𝑃𝑛, 𝑃𝑚⟩ ∝ 𝛿𝑛𝑚,
by starting from the basis of monomials

{︁
𝑥𝑘

|︁|︁ 𝑘 ∈ ℕ0}︁ and applying the Gram–
Schmidt process. The most commonly used weight functions and regions produce
well-known sets of orthogonal polynomials, tabulated in table 5.2.

Using polynomial division, an arbitrary function 𝑓 (𝑥) in the vector space can be
rewritten in terms of a quotient 𝑞 and remainder 𝑟 as

𝑓 (𝑥) = 𝑞(𝑥)𝑃𝑚 (𝑥) + 𝑟 (𝑥), where degree(𝑟 ) < 𝑚. (5.11)

Since the set of orthogonal polynomials spans the function space, we can decom-
pose 𝑞(𝑥) = ∑︁

𝑘 𝑐𝑘𝑃𝑘 (𝑥) for some constants {𝑐𝑘}. Let us now assume that 𝑓 is a
polynomial function of degree strictly less than 2𝑚. In this case 𝑞 must be of a
degree less than𝑚, and the integral we are interested in is reduced by orthogonality:∫

𝛺
d𝑥 𝜔 (𝑥) 𝑓 (𝑥) =

(︃∑︂
𝑘<𝑚

𝑐𝑘

∫
𝛺

d𝑥 𝜔 (𝑥)𝑃𝑘 (𝑥)𝑃𝑚 (𝑥)
)︃
+

∫
𝛺

d𝑥 𝜔 (𝑥)𝑟 (𝑥), (5.12)

and all terms in the summation are zero. For quadrature we discretise to find

=
𝑚∑︂
𝑗=1

𝑤𝑗 𝑞(𝑥𝑗 )𝑃𝑚 (𝑥𝑗 ) +
𝑚∑︂
𝑗=1

𝑤𝑗 𝑟 (𝑥𝑗 ), (5.13)

with equality due to the prior polynomial assumption of 𝑓 . The first summation
can be made zero as required by choosing the sample locations {𝑥𝑗 } to be the roots
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of the polynomial 𝑃𝑚 . This leaves only a term of degree less than𝑚, and the same
Laguerre-interpolation methods used to derive Newton–Cotes rules will find the
necessary values of the {𝑤𝑗 } to make the discretisation exact. Both the abscissae
and weights are independent of the integrand—other than the fixed weight function
in the inner product—and can be calculated ahead of time, or, more realistically,
looked up in reference works26,27,96.
The weight functions we are concerned with here are all of the form exp

(︁−𝑥2)︁
for some coordinate scaling by the standard deviation in the error model. Using
the Gaussian quadrature rules we have just described over the set of Hermite
polynomials allows us to calculate each separate integral over the infinite integral to
high precision with few evaluations of the integrand. This is because the detunings
are relatively small, and Û (𝜹) varies sufficiently slowly—in a mathematical, not
physical, sense—with respect to drifts in the detunings. We could now build up
a multidimensional rule by iterating the integrations, which would require 𝑚𝑑

evaluations to interpolate at degree𝑚 over 𝑑 dimensions.
While this achieves better results with fewer evaluations than adaptive-width

trapezium rules, in certain circumstances it can be possible to go even further. For
such symmetric weight functions as exp(−𝒓 · 𝒓), there is a body of literature that
finds specific rules for multidimensional integrals26,121. Orthogonal polynomials
do not easily generalise to higher-dimensional spaces, and so such rules are rather
less systematic, and more scattershot in the available degrees and required number
of evaluations. Still, for the cases of two-dimensional integration with a Gaussian
weight function, we will use rules from Cools 26 for degrees that have known more
efficient solutions, and fall back on iterated Gauss–Hermite quadrature otherwise.

5.3 Results

In principle, one would set the standard deviations in the error model by measuring
drift over the system, and producing an estimated error model. With no particular
experimental setup in mind, we instead run the optimisations over several different
values of these hyper-parameters to investigate the families of gate produced. As
expected from the analysis of section 5.2.2, optimising the gate over all states
resulted in the same solutions, no matter whether the error model accounted for
independent average offset and qubit splittings or only one of these. The symmetry
under exchange of states ensured that all effects invariably contributed to the
figure of merit. More families of solutions were found when integrating over only
a single dimension, simply because of the reduced computational cost, and all
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Tones 𝜏𝑛/𝜏1 𝛿𝑓𝑛 𝜖𝑛/𝜖1 𝑐𝑛,1 𝑐𝑛,2 𝑐𝑛,3 𝑐𝑛,4 𝑐𝑛,5 𝑐𝑛,6

2 3.368 0.132 0.297 |𝑐 | 0.066 0.934
𝜙/𝜋 −0.032 0

3 3.185 0.033 0.314 |𝑐 | 0.103 0.979 0.090
𝜙/𝜋 −0.005 −0.003 0

4 4.836 0.555 0.207 |𝑐 | 0.051 0.405 0.539 0.359
𝜙/𝜋 −0.609 −0.817 0.108 0

5 4.542 0.622 0.220 |𝑐 | 0.048 0.450 0.516 0.414 0.183
𝜙/𝜋 −0.899 −0.930 0.045 −0.242 0

6 6.529 0.482 0.153 |𝑐 | 0.055 0.098 0.413 0.733 0.215 0.128
𝜙/𝜋 −0.616 −0.785 −0.954 0.007 −0.043 0

Table 5.3—Multi-tone driving schemes of the Mølmer–Sørensen gate that are optimised to reduce
the effects of normally distributed static qubit frequency errors. The fields are as described by
eq. (5.4), where the complex amplitudes 𝑐𝑛,𝑘 = |𝑐𝑛,𝑘 |𝑒𝑖𝜙𝑛,𝑘 . These amplitudes are scaled such that
𝑐1,1 = 1 retrieves the standard single-tone dynamics. The single-tone gate has a constant total
amplitude of 1, whereas the multi-tone schemes vary by up to 𝛿𝑓𝑛 over the course of the gate. The
phase of each most-detuned tone is arbitrarily chosen to be zero.

of these solutions remained valid and stable when used as the starting point for
optimisations over both errors simultaneously.
It is worth highlighting that in multidimensional optimisations such as these,

the convergence of the algorithm on a particular solution does not require it to
be globally optimal, only locally. This can result in schemes that have the best
response to errors with respect to small changes in the control parameters, but
a much larger modification could produce significantly better results. The best
general schemes for numbers of tones between two and six are shown in table 5.3.

Unsurprisingly, one stable family of gates across a wide variety of error spreads
is a minor perturbation to a single-tone gate. In these, one tone commands around
90% of the total power, making it roughly equivalent to the base gate, but potentially
drawing out more loops in phase space before the completion of the gate, depending
on which of the tones has the most power. For two- and three-tone gates, this
style was the only stable solution that produced better fidelities than the base
gate for a fixed peak power; for various fixed detunings, these schemes exhibited
approximately a three-times reduction of infidelity. It is likely that at this level,
there were simply not enough degrees of freedom for the optimiser to produce any
more meaningful improvements.

This story changed completely once the fourth tone was added, however. These
schemes diverged from simple perturbations of the single-tone gate. Figure 5.2
shows the gate infidelity for the different schemes in table 5.3 at fixed values of
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Figure 5.2—Gate infidelities for the optimised
driving schemes with the best overall perform-
ance compared to the standard Mølmer–Sørensen
scheme. For the sake of illustration, the gate infi-
delities are evaluated here for detunings in the ra-
tio 𝛿avg = 2𝛿spl, but the behaviour is qualitatively
the same for any ratio. An error which causes
the single-tone gate to leave the error-correction
threshold of 99.9% causes an infidelity of only
2.5 × 10−5 when four or more tones are used. The
two- and three-tone gates are minor modifications
of the standard driving, yet produce a three- to
four-times improvement over the range of mean-
ingful infidelities. The inset shows the amplitude
variation of each scheme over the gate duration.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10−2 10−1

Stan
dard

gate

0

1

0 1

Ga
te

in
fid

el
ity

Detuning magnitude |𝜹 |/𝜖1

2 tones
3 tones
4 tones
5 tones
6 tones

A
m
pl
itu

de

Gate time

the detunings. The response with respect to the errors is qualitatively the same
no matter what particular pair of the average and splitting errors are chosen. In
this figure, we arbitrarily evaluated the gate infidelity for detunings in a ratio
𝛿avg = 2𝛿spl for the sake of making a one-dimensional figure to better illustrate the
scaling behaviours. The two- and three-tone gates did not achieve better than the
𝛿2 scaling of the base gate. All schemes with four or more tones achieved a scaling
of 𝛿4 in the regions of greatest error.

This improvement in scaling brings order-of-magnitude improvements over the
single-tone gate. At two of the points often cited as the thresholds for fault-tolerant
quantum computing, 99% and 99.9%64, the perfectly implemented four-tone gate
would instead have infidelities of 10−3 and 2.5 × 10−5 respectively, improvements
of approximately 10- and 40-times. Alternatively, one could ask how much larger
can the error be while maintaining fault tolerance? The same two thresholds are
breached for the four-tone gate with errors 1.8 and 3.2 times larger—a sizeable
improvement. The story is largely the same for the five- and six-tone gates. While
the constant factors of the infidelity can be reduced with the extra tones, there
remains insufficient degrees of freedom to achieve greater scaling.

Wemust also address the elephant in the room, that is the failure of the infidelities
to go to zero at zero error, and indeed how the standard gate beats the “optimised”
gates for certain lower errors. Both of these are explained by the numerical target.
There is no requirement built-in to the figure of merit that the gate is perfect under
ideal conditions, only that the expectation of the infidelity over the distribution of
errors is minimal. With the standard deviation hyper-parameters set sufficiently
large as to involve errors that prevent fault tolerance, the contribution of the
smallest detunings is minor. The expectation is dominated by other regions of
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possible errors.
The flattening out of the infidelities of the optimised schemes may well not be

a fundamental issue. Beyond a certain limit, the numerical uncertainty from the
quadrature or the time evolution may make it impossible for the optimiser to make
further progress. If so, it is likely that the differences in the parameters between the
schemes as presented in table 5.3 and hypothetical schemes that maintain the 𝛿4

scaling all the way to zero error would be sufficiently small as to be indistinguishable
in experimental realisations.
A notable feature of fig. 5.2 is that only even-numbered tones appear to signi-

ficantly affect the response of the gate. The infidelity of the three-tone gate looks
almost identical to that of the two-tone gate, and similar between the four- and
five-tone gates. The inset in the figure shows how the amplitude varies across the
gate time, but this does not explain the similarities seen in the infidelity responses.
In particular, the four- and five-tone gates do not seem to have too much in common
in this respect.

A better tool to compare the effects of different schemes is phase-space analysis.
The two terms of the Magnus expansion of the ideal Mølmer–Sørensen Hamiltonian
as originally given in eq. (3.27) are

�̂�1(𝑡) = −𝑖 𝜂𝛺2 𝑆𝑦

∫ 𝑡

0
d𝑡1

(︁
𝑒−𝑖𝜖𝑡1�̂�† + 𝑒𝑖𝜖𝑡1�̂�

)︁
, and

�̂�2(𝑡) = 𝑖
(𝜂𝛺)2

4 𝑆
2
𝑦

∫ 𝑡

0
d𝑡1

∫ 𝑡1

0
d𝑡2 sin

(︁
𝜖 (𝑡2 − 𝑡1)

)︁
.

(5.14)

Considering the two non-zero eigenstates of the 𝑆𝑦 operator with eigenvalues ±1,
the first term produces an effective Hamiltonian Ĥeff(𝑡) = D̂

(︂
± 𝑖𝜂𝛺

2𝜖
(︁
𝑒−𝑖𝜖𝑡 − 1

)︁ )︂
,

while the second is the two-qubit entangling interaction.
This displacement term permits a geometrical interpretation of the effects of

the gate. The two eigenstates gain a phase relative to each via their motional
displacement, shown by the area enclosed by the displacement: it is directly pro-
portional to the angle of the applied 𝑆

2
𝑦 rotation. This area has to correspond to

an angle (4𝑛 + 1)𝜋/4 for some integer 𝑛 to have the intended entangling effect.
The displacement must return to zero at the completion of the gate to avoid un-
wanted entanglement between the qubits and the motion. The variation of the
displacement of the motion over the course of the gate offers the easiest insight
into the similarities and differences of driving schemes, as it encodes information
on both the status of the motional mode, and the angle of the desired 𝑆2

𝑦 rotation
simultaneously.
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Figure 5.3—Motional phase-space trajectories of
the different multi-tone gates also plotted in
fig. 5.2, with the same peak power usage and dif-
ferent gate times. Colour variation shows rel-
ative time through the gate, starting from dark
purple. Only even numbers of tones cause struc-
tural changes to the paths; this matches the fidelity
responses seen in fig. 5.2.
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Phase-space expectation values for the positive eigenstate of 𝑆𝑦 are plotted in
fig. 5.3 for the base Mølmer–Sørensen scheme, and each of the other five gates
presented in table 5.3. The two non-dimensionalised operators �̂� ∝ �̂�† + �̂� and
�̂� ∝ �̂�† − �̂� correspond to the real and imaginary components of the displacement
respectively, which draws out a circle when driving at constant power. This partic-
ular shape has long been known to be unnecessary, however, provided it encloses
the correct area79,116.
The similarities between the infidelity responses shown in fig. 5.2 of odd–even

pairs of driving fields are explained by fig. 5.3. The phase-space trajectory ultimately
determines the effects of detunings on the fidelity of the resulting gate. While the
amplitude variations of each pair do not seem entirely linked, the addition of the
extra tone does not appear to offer enough freedom to structurally change the path.
Without analytic access to the propagators, it is difficult to explain exactly why this
should be the case. One thought might be that there is some particular symmetry
of the problem that discourages odd tones, but if this were the case, we should
generally expect that odd-numbered tones—except for the base-gate case—should
have negligible amplitudes in order to allocate the power elsewhere. The tabulated
values in table 5.3 do not show any such pattern, nor really any other relation.

Throughout this chapter we have only considered detunings of the qubit frequen-
cies. Notably, we did not attempt to minimise errors against both these frequen-
cies and the motional frequency simultaneously with the same parametrisation.
Motional frequencies alone have been considered with this same parametrisa-
tion42,110,132, returning a distinct cardioid shape of the phase-space path.
The methods used in this chapter reproduce these prior results when handling

only a motional uncertainty, but it is more interesting to attempt to handle all three
errors at once. Unfortunately, we found no suitable schemes with this parametrisa-
tion alone. This can be understood through the shapes of the phase-space paths.
It can be shown analytically42 that keeping the average motional displacement at
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the zero point, and minimising its maximum distance from the origin produces
gates that are most resilient against mis-sets in the motional frequency. Physically,
this seems natural: the greater the intended phase-space displacement, the greater
the error rate caused by slight mis-sets in the parameters of the motion. Similarly,
keeping the average displacement centred at zero keeps any residual qubit–motion
entanglement small in magnitude, since it is never large at any point. With this in
mind, it becomes clear why the same parametrisation cannot handle qubit and mo-
tional noise simultaneously; the centres of the displacements in fig. 5.3 is decidedly
non-zero, and the maximum displacement generally grows beyond the base-gate
case as more tones are added.

Still, it is worth highlighting that this parametrisation offers significant improve-
ments in qubit errors when motional errors can be tightly controlled. This may
not often be the case, but in a system plagued mostly by stray magnetic fields, for
example, one can use the smooth control present in this chapter to achieve ten- to
forty-times improvements at critical points of frequency drift. Above three tones,
the Fourier-series parametrisation showed quadratic improvements in the scaling
of the infidelity with respect to error, suggesting that some fundamental term can
be entirely nulled with this method.

5.4 Outlook

The shaped pulses described in table 5.3 showed significant improvements in fidel-
ities for unknown qubit-frequency errors, though their inability to simultaneously
handle errors in the motional frequency hampers their applicability in the real
world. Further, control schemes based on precise, continuous amplitude shaping
can suffer from increased calibration requirements in some experimental set-ups.
Some methods of control-field synthesis exhibit non-linear responses to amplitude
modulation, which can make implementation of these sequences difficult132. This
is not to say that the Mølmer–Sørensen gate has no future—it is still commonly
used by the largest ion-trap-based quantum-computing companies IonQ14 and
Honeywell93—only that this particular parametrisation of the control field may not
be a silver bullet for error mitigation on its own.

There have been other methods of gate shaping that have shown promise. One
can maintain a constant amplitude throughout the gate, and shape the phase-space
trajectories by introducing discrete jumps in the applied phases of the fields80.
Alternatively, one can use single-qubit spin-echo techniques to mitigate some of
the decoherence effects76. The qubit error term �̂�𝑧 does not commute with the gate
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Hamiltonian, preventing the spin-echo method from achieving perfect suppression
of these errors, but it can still improve fidelities.

The Fourier-series amplitude-shaping method presented in this chapter appears
to be more successful at reducing motional decoherence than qubit miscalibra-
tions110,132, and so mixing different parametrisation schemes may well be the best
path forwards, with qubit-error considerations best solved by other means. Very
recent work has combined multi-tone methods with spin-echo techniques, achiev-
ing good isolation against both motional- and qubit-frequency errors77. With these
other methods seemingly yielding better results and no immediate experimental col-
laborations, we did not take the gate parametrisation of this chapter further. Instead,
we now turn to look at a previously more fundamental limitation of trapped-ion
gates: the linearity approximation in their Hamiltonian.
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Coauthorship
The initial mathematical expansion of the entangling interaction in this
chapter was proposed by Mahdi Sameti, and was subsequently polished
into the complete form in collaboration with me and Florian Mintert.
I performed all the numerical simulations of the gates, and wrote the
algorithms to programmatically evaluate the functional constraints
on the driving profiles in symbolic form. Mahdi and I worked together
to find particular solutions to the resulting systems. The work in this
chapter was also published in ref. 104.

The very first step in deriving the interaction Hamiltonian for a driving field
with trapped ions is to make a linearity approximation. This is the Lamb–Dicke
approximation that we introduced in section 3.3.2, and have been using ever since.
Physically, it is a requirement that the coupling between the qubit states and the
shared motion of the ions is weak. Mathematically, we encoded it as (𝑛 + 1)𝜂2 ≪ 1
for the Lamb–Dicke parameter 𝜂 and motional occupation 𝑛. It limits the available
interactions to only the first-order sidebands and the carrier, and is necessary for
the original Mølmer–Sørensen interaction with constant power to be independent
of the motional state.
With modern hardware, however, the necessity of maintaining this regime is

becoming a more onerous burden. The highest fidelity gates must account for
the breakdown of the approximation in their error budgets, where it is a non-
negligible contribution4,40. A common impediment to large-scale ion-trap quantum
computing is the speed of gate operations. In order to increase speed, one must
have more power available and consequently drive the gate with a larger value of
the Lamb–Dicke parameter. As this increases, though, so do the non-linearities
associated with the breakdown of the Lamb–Dicke regime, until they dominate all
errors and reduce the fidelity well beyond any acceptable limit107. These attempts
to increase the speed have been accompanied by some numerical work to curtail
these effects, but prior to our work, there had been nothing systematic nor analytic.
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The non-linearities are also worsened by heating of the motional modes. With
even modest values of the Lamb–Dicke parameter, if the motion is sufficiently
excited, onewill still see residual qubit–motion entanglement at the gate-completion
time, and the entangling interaction itself will see its strength become phonon-
number dependent. As the sizes of ion traps increase, so too does the heating rate
on the ions, in general, meaning greater deviation from ideal gate operation.

For trapped-ion quantum processors to continue to scale up, without unrealistic
requirements on heating control and laser power, it is necessary to be able to break
through the linearity approximation. This chapter presents a functional approach
to bringing trapped-ion gates outside the Lamb–Dicke approximation, by driving
higher-order sidebands to null undesired terms at the gate time. We focus on the
Mølmer–Sørensen interaction, though the essential techniques are just as applicable
to �̂�𝑧 ⊗ �̂�𝑧-type gates101. The recipe systematically removes terms of higher powers
of the Lamb–Dicke parameter and the motional occupation as more sidebands are
considered. Importantly, it does not require specific forms for the driving profile of
each sideband, allowing it to be mixed with extant methods of suppressing other
errors, such as the multi-tone gates discussed in the previous chapter.

6.1 Non-linear ion–motion interactions

The laser–ion interaction Hamiltonian for a single motional mode is given in
eq. (3.19). In the weak-coupling regime, one expands the motional exponential as

D̂
(︁
𝑖𝜂𝑒𝑖𝜔𝑧𝑡 �̂�†

)︁
= 1 + 𝑖𝜂𝑒−𝑖𝜔𝑧𝑡 �̂� + 𝑖𝜂𝑒𝑖𝜔𝑧𝑡 �̂�† +O(𝜂2), (6.1)

and neglects the higher-order terms. More precisely, one can use the Baker–
Campbell–Hausdorff-derived eq. (3.22) to separate out the exponential into a sum

= 𝑒−
𝜂2
2

∞∑︂
𝑗=0

∞∑︂
𝑘=0

(𝑖𝜂) 𝑗+𝑘
𝑗 !𝑘! 𝑒𝑖 ( 𝑗−𝑘)𝜔𝑧𝑡 �̂�† 𝑗 �̂�𝑘

= 𝑒−
𝜂2
2

∞∑︂
𝑘=−∞

𝑒𝑖𝑘𝜔𝑧𝑡�̂�𝑘 (𝜂).
(6.2)

The operators {�̂�𝑘} change the motional state by 𝑘 phonons, and are explicitly

�̂�𝑘 (𝜂) =
∞∑︂
𝑛=0

(𝑖𝜂) |𝑘 | (−𝜂2)𝑛
(𝑛 + 𝑘)!𝑛! �̂�

†𝑛+𝑘�̂�𝑛 for 𝑘 ≥ 0, and �̂�−𝑘 = (−1)𝑘�̂�†
𝑘 . (6.3)
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Figure 6.1—Energy-level diagram for two ions
and one motional mode driven by the Hamilto-
nian in eq. (6.6). Applying a drive on equal-
order blue- and red-sideband transitions simultan-
eously, close to resonance, results in an effective
qubit–qubit interaction with phonon-dependent
strength 𝛤 . If only the first-order sidebands are
driven inside the Lamb–Dicke regime, this coup-
ling is independent of the motion. |𝑛−2⟩ |𝑛−1⟩ |𝑛⟩ |𝑛+1⟩ |𝑛+2⟩

|𝑒𝑒⟩

|𝑒𝑔⟩ |𝑔𝑒⟩

|𝑒𝑒⟩

𝜔𝑧

𝛤 (𝑛)
𝑓1 𝑓2𝑓 ∗1𝑓 ∗2

The complete interaction including the qubit-excitation operator 𝑆+ =
∑︁

𝑗 �̂�
( 𝑗)
+ is

Ĥ = 𝑓 (𝑡) 𝑒−𝜂2
2

∞∑︂
𝑘=−∞

𝑒𝑖𝑘𝜔𝑧𝑡𝑆+�̂�𝑘 + H.c.. (6.4)

Each of the different 𝑘 corresponds to a well-defined transition as previously
discussed: 𝑘 = 0 is the carrier, positive values of 𝑘 are the 𝑘th-order blue sideband,
and negative values of 𝑘 are the corresponding red sideband. As before, each
transition has an associated frequency 𝑘𝜔𝑧 , corresponding to the total frequency
of phonons that need to be added—or removed, in the case of the red-sideband
transitions—to the system. For the most part, the only transitions that have any
appreciable effect on the dynamics are ones which share their frequency with a
component of the driving field.

With eq. (6.4), one can drive a series of two-photon processes that preserve the
phonon count by targeting the equal-order red and blue sidebands with related
drives. In particular, let us consider a driving field

𝑓 (𝑡) = −𝑖 𝑒
𝜂2/2

𝜂

∑︂
𝑘>0

(︂
𝑓𝑘 (𝑡)𝑒−𝑖𝑘𝜔𝑧𝑡 + (−1)𝑘 𝑓 ∗𝑘 (𝑡)𝑒𝑖𝑘𝜔𝑧𝑡

)︂
. (6.5)

The remaining time dependences of the {𝑓𝑘} are slow compared to the trap fre-
quency 𝜔𝑧 so that each term only drives its closest sideband. The prefactor of
𝑒𝜂

2/2 cancels out its corresponding term in the Hamiltonian, while the initial phase
factor −𝑖 and the relative phase factors (−1)𝑘 are chosen such that the Hamiltonian,
neglecting far-off-resonant processes, simplifies to

Ĥ =
1
𝜂
𝑆𝑦

∑︂
𝑘>0

(︂
𝑓𝑘�̂�𝑘 + 𝑓 ∗𝑘 �̂�

†
𝑘

)︂
. (6.6)

This does not include any carrier transitions; we will not use them in the following
work. The factor of 1/𝜂 is crucial to the rest of this chapter, but we need to advance
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further in the derivations to fully motivate its inclusion.
Figure 6.1 illustrates the effects of the Hamiltonian eq. (6.6). If any of the 𝑓𝑘 are

non-zero, a two-photon two-qubit-entangling process is present with a phonon-
dependent coupling strength 𝛤 . In the special case of the first sideband and the
Lamb–Dicke regime, this coupling strength is independent of the number of mo-
tional excitations, and the only other process is the qubit–motion interaction we
have already discussed in detail.
The standard linear Mølmer–Sørensen interaction is retrieved from eq. (6.6) by

addressing only the first-order sideband transitions, i.e. driving only 𝑓1. The original
formulation of the gate corresponds to 𝑓1(𝑡) = 𝜖

4𝑒
𝑖𝜖𝑡 . We have already seen the

Magnus-expansion approach to solving the propagators in both eqs. (3.27) and (5.14),
which includes a term [�̂�1, �̂�−1] = 𝜂2 − 2𝜂4�̂�†�̂� +O(𝜂6). In the Lamb–Dicke limit,
this is truncated to its leading order, and the expansion terminates.

To go further, let us define a shorthand notation for iterated time integration as

{𝑓 } =
∫ 𝑡

0
d𝑡1 𝑓 (𝑡1) and

{︁
𝑓 {𝑔}}︁ =

∫ 𝑡

0
d𝑡1 𝑓 (𝑡1)

∫ 𝑡1

0
d𝑡2 𝑔(𝑡2), (6.7)

and so forth for further nesting. In this form, the time-evolution operator for the
base Mølmer–Sørensen gate, accounting for only the lowest orders of 𝜂, is∗

Û0(𝑡) = exp
(︂
𝑆𝑦

(︁{𝑓1}�̂�† − {𝑓 ∗1 }�̂�
)︁ + 𝑖𝑆2

𝑦 Im
{︁
𝑓1{𝑓 ∗1 }

}︁)︂
. (6.8)

This operator has three processes: the desired 𝑆2
𝑦 , the unwanted 𝑆𝑦�̂�†, and its reverse

counterpart 𝑆𝑦�̂�. Achieving an ideal gate is tantamount to solving the coupled
conditions {𝑓1} = 0 and Im

{︁
𝑓1{𝑓 ∗1 }

}︁
= 𝜃 , for a desired entangling angle 𝜃 . Bell-state

creation corresponds to 𝜃 = 𝜋/8.†

We have now reached our departure point from known theory, and from the
Lamb–Dicke regime. We now must consider Hamiltonians that are non-linear in
the motional operator �̂�, and contain higher-order terms in 𝜂. In principle, our
approach will be to find a series expansion for the time-evolution operator akin to
eq. (6.8), and then apply the constraints that all processes except for 𝑆2

𝑦 go to zero
at the gate time.
We will seek to nullify unwanted terms order-by-order in 𝜂 by constructing a

product expansion as
Û = Û0Û1 · · · Û𝑑 Û error, (6.9)

∗To reduce notational noise, this chapter uses the convention ℏ = 1.
†𝑆

2
𝑦 = 2 + 2�̂�𝑦 ⊗ �̂�𝑦 , hence the factor-of-two difference from the angle that might be expected.
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where the final term is never explicitly calculated, but is guaranteed to only contain
higher-order terms. The expansion is built by a series of frame transformations,
each of which removes the terms of the lowest order of 𝜂. Starting from the base
Hamiltonian, which we shall now label Ĥ0, we move to the next Hamiltonian by
the transformation

Ĥ𝑗+1 = Û†
𝑗 Ĥ𝑗 Û 𝑗 + 𝑖

(︁
𝜕𝑡 Û

†
𝑗

)︁
Û 𝑗 . (6.10)

The first unitary is exactly Û0 as described by eq. (6.8). To remove the terms
lowest-order in 𝜂 from the Hamiltonians, we define all subsequent unitaries as

Û 𝑗 = exp
(︂
−𝑖{︁Ĥ′

𝑗

}︁)︂
for 𝑗 > 0, (6.11)

and Ĥ′
𝑗 is the terms of order exactly 𝜂 𝑗 from Ĥ𝑗 . Note that Û 𝑗 is not necessarily a

solution to any Schrödinger equation; this is not required for the expansion.
We do not need to directly calculate any matrix exponentials to evaluate eq. (6.10).

The first term permits a direct Baker–Campbell–Hausdorff expansion—using the
result of eq. (2.13)—yielding

Û†
𝑗 Ĥ𝑗 Û 𝑗 =

1
0!Ĥ𝑗 + 1

1!

[︂
𝑖
{︁
Ĥ′

𝑗

}︁
, Ĥ𝑗

]︂
+ 1

2!

[︂
𝑖
{︁
Ĥ′

𝑗

}︁
,
[︂
𝑖
{︁
Ĥ′

𝑗

}︁
, Ĥ𝑗

]︂ ]︂
+ · · · . (6.12)

The second term requires an evaluation of the derivative of a matrix exponent. This
derivative for a general matrix exp �̂� is46

𝜕𝑡𝑒
�̂� =

(︃∫ 1

0
d𝛼 𝑒𝛼�̂�

(︁
𝜕𝑡�̂�

)︁
𝑒−𝛼�̂�

)︃
𝑒�̂� , (6.13)

which qualitatively is the continuous application of the chain and product rules
of differentiation. Expanding the integrand into a sum with eq. (2.13) and directly
integrating the resulting power series in 𝛼 gives the relation(︂

𝜕𝑡𝑒
�̂�
)︂
𝑒−�̂� =

1
1!𝜕𝑡�̂� + 1

2!

[︂
�̂� , 𝜕𝑡�̂�

]︂
+ 1

3!

[︂
�̂� ,

[︂
�̂� , 𝜕𝑡�̂�

]︂ ]︂
+ · · · , (6.14)

which relates to the
(︁
𝜕𝑡 Û

†
𝑗

)︁
Û 𝑗 term by �̂� = 𝑖

{︁
Ĥ′

𝑗

}︁
. The numeric factors in eqs. (6.12)

and (6.14) differ slightly for 𝑑 nested commutators due to the integration of a factor
of 𝛼𝑑 . The derivative of the time-integrated term

{︁
Ĥ′

𝑗

}︁
is exactly Ĥ′

𝑗 by the standard
rules of anti-derivatives. Altogether, this leads to a series form of eq. (6.10) as

Ĥ𝑗+1 =
∞∑︂

𝑚=0

1
𝑚!

[︂
𝑖
{︁
Ĥ′

𝑗

}︁
, · · ·

[︂
𝑖
{︁
Ĥ′

𝑗

}︁
,⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

𝑚 commutators

Ĥ𝑗 − 1
𝑚 + 1Ĥ

′
𝑗

]︂
· · ·

]︂
. (6.15)
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Since Ĥ′
𝑗 is all the order-𝜂 𝑗 terms from Ĥ𝑗 , the first term of the summation only

contains terms of order 𝜂 𝑗+1 and greater, while the subsequent elements have terms
of order 𝜂 (𝑚+1) 𝑗 and greater.
We have now arrived at a perturbative method for approximating the true

time-evolution operator for the non-linear Mølmer–Sørensen-like Hamiltonian of
eq. (6.6). The result is a propagator

Û = Û0Û1 · · · Û𝑑 Û error, where Û 𝑗 = exp
(︂
−𝑖{︁Ĥ′

𝑗

}︁)︂
for 𝑗 > 0, (6.16)

and the Ĥ′
𝑗 ∝ 𝜂 𝑗 are the leading-order terms of the Hamiltonians from eq. (6.15).

The error term is never calculated exactly, but if the expansion is made up to Û𝑑 ,
then the generator of the error term contains only terms of higher order than 𝜂𝑑 .
Further, we have constructed the terms without reference to the precise forms of
the driving functions of each sideband.
We require that Û = ÛmsÛ error to make a valid gate, which imposes a series of

conditions. The desired dynamics of Ûms can be achieved if all the generators of the
Û𝑑 are zero, except for the terms proportional to the operator 𝑆2

𝑦 with no motional
dependence. We expand

Ĥ′
𝑗 = 𝜂 𝑗𝜓𝑗 [𝒇 ]𝑆2

𝑦 + 𝜂 𝑗
∑︂
�̂�

𝜒𝑗,�̂� [𝒇 ]�̂� (6.17)

for some scalar functionals𝜓 and 𝜒 of the vector of sideband driving profiles 𝒇 , and
some operators that are calculated by eq. (6.15). Each operator �̂� must individually
be cancelled out, and if so, the remaining 𝑆

2
𝑦 terms can all be brought into one

exponential, leaving the final conditions∑︂
𝑗

𝜂 𝑗𝜓𝑗 [𝒇 ] = 𝜋

8 and 𝜒𝑗,�̂� [𝒇 ] = 0 for all 𝑗 and �̂� . (6.18)

Assuming that the driving profiles are implemented perfectly such that the gate
operator is ÛmsÛ error, we can calculate the minimal dependence on 𝜂. An expansion
up to the term Û𝑑−1 has an error term of the form

Û error = exp
(︂
−𝑖𝜂𝑑�̂�

)︂
(6.19)

for some unknown Hermitian �̂� that can itself contain factors of 𝜂. The gate
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infidelity over a basis |𝑘⟩ is

𝐼 = 1 −
∑︂
𝑘

|︁|︁|︁⟨︁𝑘 |︁|︁ Û error
|︁|︁𝑘⟩︁|︁|︁|︁2

= 1 −
∑︂
𝑘

⟨︂
𝑘
|︁|︁|︁(︂1 − 𝑖𝜂𝑑�̂� +O

(︁
𝜂2𝑑�̂�

2)︁ )︂|︁|︁|︁𝑘⟩︂⟨︂𝑘 |︁|︁|︁(︂1 + 𝑖𝜂𝑑�̂� +O
(︁
𝜂2𝑑�̂�

2)︁ )︂|︁|︁|︁𝑘⟩︂
= O

(︁
𝜂2𝑑 )︁,

(6.20)

since all powers of �̂� remain Hermitian. In other words, each additional step of
the expansion provides the constraints needed to improve the error scaling with
respect to the Lamb–Dicke parameter by a factor of 𝜂2. The base gate accounts for
all terms of order 𝜂 but not 𝜂2, so its infidelity scaling is O

(︁
𝜂4)︁ .

We may now discuss the factor of 1/𝜂 that we identified in eq. (6.5). At all stages
of the perturbative expansion, it was crucial that we could identify the terms of
lowest order in 𝜂. The general solutions to the Mølmer–Sørensen interaction all
require a driving field that scales in power as 1/𝜂, which corresponds physically
to matching the coupling strength of the first-order sideband. If this is left in the
individual sideband profiles, there is a potential factor of 𝜂−1 lurking that prevents
eq. (6.15) from strictly increasing the powers of 𝜂. By extracting the negative
power immediately, each step of the expansion always increases the order 𝜂, and
consequently the new conditions decouple by at least one further power.∗ This also
motivates the choice to avoid the carrier transition; it is not dependent on 𝜂, so a
driving field that scales as 1/𝜂 would re-introduce the low-order terms we sought
to remove.

Before moving on to find solutions to eq. (6.18), let us briefly discuss an alternative
series expansion for finding the gate conditions. Instead of the frame-transformation
method we have just shown, which produces a propagator as a product of successive
terms, one could also have used the Magnus expansion to iterate additively towards
the generator of the propagator. This is equally a valid method, but as the terms
are fixed by more general Lie algebra, they are not stratified by different orders of
𝜂. In practice, their calculations tend to be more onerous, and lead to more complex
functional conditions. We verified that the schemes presented in this chapter also
satisfy the conditions derived from a Magnus-series approach, but the problem is
more easily tractable when using the product-based series described above.

∗This factor of 1/𝜂 really stumped us for a long time—we kept producing schemes that did not
have the error scaling we expected. Without explicitly accounting for it, some terms that are truly
of low order get mistakenly left in Û error, as they look like 𝑓 𝑑𝜂𝑑+1. This would be misclassified as
order 𝜂𝑑+1, rather than 𝜂, so not set to zero.
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6.2 Calculating solutions

The previous section gave a recipe for calculating functional conditions at each
degree of 𝜂. To actually produce a gate scheme, however, we must first actually
evaluate the conditions, then solve the resulting integral equations. Neither of these
steps are trivial; one could calculate the conditions manually, but it is extremely
tedious and error prone. Instead, this section offers a more computational approach,
which I designed and implemented71.

6.2.1 Finding constraints

We begin by representing the as-yet-unknown scalar functions 𝑓 by five recursive
elements: a base corresponding to a specific sideband driving profile, the addition of
two or more elements, the multiplication of two or more elements, the time-integral
of an element, and the complex conjugation of an element. We represent a numeric
prefactor as an exact fraction, and keep track of whether it is real or imaginary by a
single flag. Further, we track the power of 𝜂 of each term as a non-negative integer.
All of the mathematical operations on scalar functions needed for eq. (6.15) can be
represented in this abstract form, and used to produce concrete solutions later.

We must also track the operators that are present in the expansion. It is desirable
to keep the number of unique operators tracked small, as the number of terms in
each element of the sum in eq. (6.15) increases exponentially due to the multiplic-
ation. We can prune the collection by immediately discarding any term whose
power of 𝜂 is too high for the desired level of approximation. To go further, we
need to find some normal form of the operators considered; we do not want to track
all

(︁𝑛+𝑚
𝑛

)︁
permutations of �̂�†𝑛�̂�𝑚 that might arise if we can do it in fewer. We use

the commutation rule

�̂�𝑚�̂�†𝑛 =
min(𝑛,𝑚)∑︂

𝑘=0
𝑐𝑘�̂�

†𝑛−𝑘�̂�𝑚−𝑘 with 𝑐𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1 for 𝑘 = 0
(𝑚−𝑘+1) (𝑛−𝑘+1)

𝑘 𝑐𝑘−1 for 𝑘 > 0,
(6.21)

to rewrite any product of motional operators into a sum of terms in a defined order.
This allows a substantial reduction; instead of the (2𝑛)!/(𝑛!)2 different permutations
of �̂�†𝑛�̂�𝑛 (such as �̂�†�̂� · · · �̂�†�̂�) that we might encounter, we keep track of only the 𝑛
terms which have all their �̂�† operators to the left of all their �̂� operators.

The normal form of the qubit components of the operators is simpler. The phase
convention of the driving fields was chosen in eq. (6.6) to ensure that the only qubit
operator is 𝑆𝑦 = �̂� (1)

𝑦 + �̂� (2)
𝑦 . This satisfies 𝑆3

𝑦 = 4𝑆𝑦 , and so all of the qubit operators
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that appear at any level of the expansion are either 𝑆𝑦 or 𝑆2
𝑦 , with some numerical

prefactor that we are already tracking. We do not need to store the operators in
matrix form; a simple 3-tuple ({1, 2}, integer, integer) suffices, where the terms
are the powers of 𝑆𝑦 , �̂�†, and �̂� respectively.
Each level of the perturbative expansion can then be stored as a hashmap of

{operator: coefficient}, where the two components use the representations as
described above. Taken altogether, these techniques make the two operations find
the coefficient of an operator and update the coefficient constant-time complexity,
while minimising the number of operators that must be tracked. This is vital for
the efficiency of finding very high-order constraints, even if in practice solving the
constraints from arbitrarily high orders is somewhat difficult.
With this formalism, all of the operators �̂� in eq. (6.18) will be of the form

�̂�†𝑝�̂�𝑞𝑆
𝑟
𝑦 where 𝑝 and 𝑞 are non-negative integers, and 𝑟 is either one or two. As an

illustration, consider the �̂�†�̂�𝑆2
𝑦 operator in the Û2 term with two sidebands driven.

Its prefactor is∗

𝑖𝜂2 Im
{︁
𝑓2{𝑓 ∗2 } − 2𝑓1{𝑓 ∗1 }

}︁
= 0, (6.22)

where the equality to zero is enforced by the requirement that there is no �̂�†�̂�𝑆2
𝑦

component in the Mølmer–Sørensen interaction. Physically, this term is the lowest-
order error term that causes the entangling interaction to have a motion-dependent
strength, even though this particular process does not change the phonon count.

6.2.2 Solving constraints

Finally, we arrive at a point wheremust solve a large quantity of iterated integrations
to fully evaluate the constraints; recall that every appearance of the {𝑓 } notation
is an integration per eq. (6.7). One cannot reason about integral constraints with
general functions, so at this point we must fix the form of the functions we will
be working with. For this work, we consider only driving functions that can be
parametrised as

𝑓𝑗 (𝑡) =
∑︂
𝑘

𝑐𝑗,𝑘𝑒
𝑖𝑛𝑗,𝑘𝜖𝑡 for constant real numbers 𝑐𝑗,𝑘 and integers 𝑛𝑗,𝑘 , (6.23)

with the gate occurring at a time 𝜏 = 2𝜋/𝜖 . Finding a solution now is equivalent to
finding a set of the variables 𝑐𝑗,𝑘 and 𝑛𝑗,𝑘 that satisfy all the constraints. The values
𝑛𝑗,𝑘𝜖 are physically detunings from the relevant sideband, which must be kept small

∗This is given in terms of the imaginary component operation for clarity, though programmatic-
ally we need only consider the equivalent sum and conjugation operations.
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relative to the sideband separation 𝜔𝑧 to avoid spurious off-resonant excitation.
The coefficients 𝑐𝑗,𝑘 are the pulse amplitudes, related to the input laser power.

This form of the driving profiles is consistent with the standard driving of the base
Mølmer–Sørensen gate, and with the multi-tone parametrisation used in chapter 5.
The detunings are chosen to be integers such that the majority of constraints will be
solved at the gate time simply because the integral

∫ 2𝜋
0 d𝑥𝑒𝑖𝑛𝑥 is zero for non-zero

integers 𝑛. Some of the constraints are not of this form, however; the entangling
condition in particular is not a vanishing condition, and requires that we evaluate
an integral with a zero exponent.
It is typically impractical to use general-purpose computer algebra software to

calculate the vast quantity of integrals we find, as generic methods are simply
too slow. We can avoid them by doing the integration more manually, though
still programmatically. The group of functions with parametrisation eq. (6.23)
is closed under the operations addition, multiplication and conjugation, but not
time integration. One can expand the parametrisation to include a multiplying
polynomial in 𝑡 to keep the group closed in this case, which allows an efficient
representation as

𝑓𝑗 (𝑡) =
∑︂
𝑘

∑︂
ℓ

𝑡 ℓ𝑐𝑗,𝑘,ℓ𝑒
𝑖𝑛𝑗,𝑘𝜖𝑡 . (6.24)

Non-constant polynomials are never used to drive the sidebands, only in the in-
ternal representation. The definite integrals of these functions can be calculated
analytically using standard techniques, and the result is a function that is also of
the form of eq. (6.24). If a scalar-function element of this group is represented by
a hashmap {frequency: polynomial coefficients}, one can efficiently evaluate the
necessary operations without invoking general-purpose symbolic manipulators.

At this point, we have all the ingredients to produce candidate gates. During the
evaluation of the integrals, wemay keep track of all the different frequencies present
in integrations symbolically; they are simple summations of integers. Some, such
as in terms like

{︁
𝑓1{𝑓 ∗1 }

}︁
, will unavoidably become zero in the second integration,

but for all others we may proceed as if they are non-zero, and build up a set of
constraints on the detunings to ensure this. Finding a set of detunings—the 𝑛 in
eq. (6.23)—that satisfy these simple constraints is enough to solve many of the
complete conditions. The amplitudes of the different tones in the driving pulses are
found by a series of simultaneous equations, dependent on the particular detunings.
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6.2.3 Example solutions

To improve the scaling of 𝜂 beyond the base gate, one should only need to consider
terms up to and including those in 𝜂2. Some of these terms arise from higher-order
processes of the first red- and blue-sideband processes, and cannot be cancelled
directly by shaping the amplitudes of these transitions. Instead, we must drive
higher-order sideband transitions as well. While these more weakly couple the
qubits and their motion, two factors conspire to assist us: the error processes are
weak already, so we do not require much power on the higher-order sidebands; and
we are concerned with the regime of increasing Lamb–Dicke parameter anyway,
which improves the strength of these transitions.

Fortuitously, monochromatically driving only two pairs of sidebands is sufficient
to cancel not just the factors of 𝜂2, but also those of 𝜂3. For completeness’ sake,
the full list of conditions that must be zero at the gate time at this order for two
sidebands is:∗

{𝑓1}; {𝑓2};
{︁{𝑓1}𝑓 ∗2 }︁

;
{︁
𝑓1{𝑓1}

}︁
; Re

{︂
𝑓1{𝑓1}{𝑓 ∗2 } + 𝑓1

{︁
𝑓 ∗2 {𝑓1}

}︁}︂
; (6.25){︁

𝑓1{𝑓 ∗2 }
}︁
;

{︁
𝑓1{𝑓2}

}︁
;

{︂
4𝑖{𝑓2} Im

(︂
3𝑓1{𝑓 ∗1 } − 𝑓2{𝑓 ∗2 }

)︂
+ 3𝑓1

{︁
𝑓2{𝑓 ∗1 }

}︁}︂
; (6.26)

Re
{︁{𝑓1}{𝑓1}𝑓 ∗2 }︁

;
{︂
2𝑓1{𝑓1}{𝑓 ∗1 } + {𝑓1}

(︂
𝑓 ∗2 {𝑓2} − 𝑓 ∗1 {𝑓1}

)︂
− 𝑓2

{︁
𝑓 ∗2 {𝑓1}

}︁}︂
; (6.27){︃

4𝑖
{︁
𝑓2{𝑓 ∗1 }

}︁
Im

(︂
3𝑓1{𝑓 ∗1 } − 𝑓2{𝑓 ∗2 }

)︂
− 2{𝑓 ∗1 }{𝑓2}

(︂
3𝑓 ∗1 {𝑓1} + 𝑓2{𝑓 ∗2 }

)︂
+ 2𝑓 ∗2 {𝑓2}

{︁
𝑓2{𝑓 ∗1 }

}︁ − 6𝑓1{𝑓1}
{︁
𝑓 ∗2 {𝑓2}

}︁ + 3𝑓1{𝑓2}{𝑓 ∗1 }{𝑓 ∗1 }
}︃
;

(6.28)

Re
{︃
6𝑓1{𝑓1}{𝑓 ∗1 }

{︁
𝑓 ∗2 {𝑓1}

}︁ − 3𝑓1{𝑓 ∗1 }{𝑓 ∗1 }
{︁
𝑓2{𝑓 ∗1 }

}︁
+ 2𝑓2{𝑓 ∗1 }{𝑓 ∗2 }

{︁
𝑓2{𝑓 ∗1 }

}︁ − 2𝑓2
{︁
𝑓 ∗2 {𝑓1}

}︁{︁
𝑓 ∗2 {𝑓1}

}︁}︃
;

(6.29)

Im
{︁
2𝑓1{𝑓 ∗1 } − 𝑓2{𝑓 ∗2 }

}︁
. (6.30)

The entangling condition in functional form is

Im
{︂
𝑓1{𝑓 ∗1 } +

1
2𝜂

2𝑓2{𝑓 ∗2 } − 4𝜂2{𝑓1}
(︂
𝑓 ∗2

{︁{𝑓 ∗1 }𝑓2}︁ + 𝑓1{𝑓 ∗1 }2
)︂}︂

=
𝜋

8 . (6.31)

One possible solution to all of these

𝑓1(𝑡) = 𝛺 exp(2𝑖𝜖𝑡) and 𝑓2(𝑡) = 𝛺 exp(𝑖𝜖𝑡), (6.32)

∗Recall the notation
{︁
𝑓 {𝑔}}︁ is iterated time integration

∫ 𝑡

0 d𝑡1 𝑓 (𝑡1)
∫ 𝑡1

0 d𝑡2 𝑔(𝑡2).
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and the gate occurring at a time 𝜏 = 2𝜋/𝜖 . This corresponds to a gate that makes
two complete loops in phase space in order to pick up the desired entangling phase.
There are multiple different possibilities for the frequencies, but this particular pair
requires the least amount of total power to achieve. Regardless of the value of 𝛺 ,
this satisfies all of the conditions of eqs. (6.25) to (6.29) because the two profiles are
monochromatic with frequencies of 2𝜖 and 𝜖 . The condition eq. (6.30) is satisfied
because in addition to this, the amplitudes of the drivings of the two sidebands are
equal. The amplitude 𝛺 is determined by the entangling condition, which for these
two profiles reduces to

3𝜂2𝑥4 − (︁
1 + 𝜂2)︁𝑥2 + 1

8 = 0, where 𝑥 =
𝛺

𝜖
. (6.33)

We preferentially choose the smaller root to minimise power usage.
On extension to fourth order in𝜂, the conditions become far too long to reproduce

textually. They are available pre-calculated in machine-readable form in a separate
repository71, along with the conditions to third order. Importantly, we were not
able to find any solutions to all the conditions that use only monochromatically
driven sidebands; the 𝜂4-dependent conditions were too intricate. Instead, we add
an extra 𝜂-dependent tone onto the driving of the second sideband. With the 1/𝜂
prefactor and the natural 𝜂2 dependence of the second sideband, this additional
term contributes only processes that scale as 𝜂2 in lowest order, and so can be
used to surgically target only the problematic higher-order conditions; it does not
contribute to low-order terms at all.

The lowest-power driving profiles we found that satisfy all the constraints are

𝑓1(𝑡) = 𝛺 exp(5𝑖𝜖𝑡), 𝑓3(𝑡) =
√︃

3
5 𝛺 exp(𝑖𝜖𝑡),

𝑓2(𝑡) = 𝛺√
5

(︂
2 exp(2𝑖𝜖𝑡) + 7

5
𝛺

𝜖
𝜂 exp(−7𝑖𝜖𝑡)

)︂
.

(6.34)

With these functions, the entangling condition to determine the ratio of 𝑥 = 𝛺/𝜖 is

382
1875𝜂

4𝑥6 − 56
75

(︂
2𝜂4 + 𝜂2

)︂
𝑥4 +

(︂
𝜂4 + 2𝜂2 + 2

)︂
𝑥2 − 5

8 = 0. (6.35)

In principle, the method we have proposed in this section allows us to go to ever
higher orders. The feasibility of this in reality is limited by the available hardware
control, and the difficulty in actually solving all the constraints. The computational
methods presented were easily able to calculate all the constraints up to 𝜂8 on a
personal laptop within a few minutes, but actually solving them all becomes very
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Figure 6.2—Gate infidelities of the generalised
Mølmer–Sørensen scheme with one, two and three
driven sidebands. For each, the infidelity is plotted
for initial pure motional states with zero, one and
two phonons. The scaling of the infidelity with
respect to the Lamb–Dicke parameter is reduced
from O(𝜂4) for the base gate to O(𝜂8) and O(𝜂10)
for the two- and three-sideband gates respectively.
Lines proportional to these exact power laws are
shown in solid grey for comparison.

10−12
10−10
10−8
10−6
10−4
10−2

1

1
100

1
10 1

One s
ideba

nd

Tw
o si

deb
and

s

Th
ree

sid
eba

nds

∝𝜂4

∝𝜂8 ∝𝜂10

In
fid

el
ity

Lamb–Dicke parameter 𝜂

|0⟩
|1⟩
|2⟩

difficult. We show in the next section that the scaling improvements for these first
two degrees of the expansion already offer very large reductions in gate infidelities,
and allow us to break out of the Lamb–Dicke regime.

6.3 Simulation results

Wenumerically simulate the effects of the schemes proposed by eqs. (6.32) and (6.34),
to verify that the infidelity scaling with respect to 𝜂 behaves as expected. For pure
states of motion |0⟩, |1⟩ and |2⟩, the gate infidelity as a function of the Lamb–Dicke
parameter is shown in fig. 6.2 for the base gate, and the third- and fourth-order
schemes. For these purposes, all the relevant frequencies are taken to be calibrated
accurately. The simulations were done by taking the exact Hamiltonian of eq. (6.4),
without any of the perturbative expansion techniques. They do not include off-
resonant sideband effects, as these can be made arbitrarily small by choosing a
suitably large 𝜔𝑧 .

The improvement in the scaling of the infidelity with respect to𝜂 is clear. All gates
clearly agree with their expected scaling laws, shown in solid grey for comparison.
The base gate scales approximately as 𝜂4, while the third- and fourth-order schemes
are dominated by effects on the order of 𝜂8 and 𝜂10 respectively. This is true for each
of the starting pure motional states as well; one can see a non-linear dependence
on the motion at the requisite order of the Lamb–Dicke parameter, but the scaling
does not change. Of course, for sufficiently well excited thermal motion, one might
see higher-order terms begin to dominate again. In current ion-trap labs, however,
the overwhelming majority of the motional population is kept in these lower levels.
The heatmaps in fig. 6.3 show the fidelity response of the three gate schemes

for highly excited thermal motional states, with mean phonon occupations up
to �̄� = 100. The 99.9%-fidelity contour is presented as a guide for the range of
parameters with which quantum error correction can still be achieved. The higher-
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Figure 6.3—Heatmaps of the gate infidelity for a thermal motional state with varying mean phonon
occupation and Lamb–Dicke parameter. The three plots correspond to (a) the base gate, (b) the
third-order two-sideband scheme, and (c) the fourth-order three-sideband scheme. Contours denote
infidelities of 10−3 (solid) and 10−5 (dashed).

order schemes can still produce valid gates even with mean thermal occupation
on the order of a few phonons. This potentially allows gates to be performed that
are sufficiently insensitive to the motional state that they can be performed at the
Doppler-cooling limit, eschewing the need for sideband cooling.
For a quantitative comparison, prior work on producing the fastest gates in

trapped ions used a Lamb–Dicke parameter 𝜂 ≈ 1⁄10, with the average motional
excitation cooled to �̄� ≈ 1⁄20 or below

107. The infidelity due to the breakdown of the
Lamb–Dicke regime in a perfect gate with these parameters would be 1.9 × 10−4 for
the base gate. The two- and three-sideband schemes as described in section 6.2.3
drastically reduce this to 1.1 × 10−7 and 7 × 10−10 respectively—several orders of
magnitude for each. Of course, these fidelities are highly unlikely to be the dominant
effects in any experimental realisation. Instead, we can compare the maximum
achievable parameters that maintain the same error. In this case, the two-sideband
scheme could maintain the same error with either a Lamb–Dicke parameter up
to 0.27 or a mean thermal occupation up to 6.6, while these two numbers for the
three-sideband scheme are 𝜂 < 0.43 and �̄� < 21.
As in chapter 5, one can gain some insight into the behaviour of the motion

throughout the gate through consideration of the phase-space displacement. This
is plotted for the three schemes in question in fig. 6.4, both inside and far outside
the Lamb–Dicke regime. The qubits are in the positive-value eigenstate of the
𝑆𝑦 operator, and the motion begins in a mixed thermal state of the given mean
occupancy. The conventional driving scheme shows a substantial failure to close the
phase-space loop at the gate time outside the Lamb–Dicke regime, where the new
profiles have vast improvement, despite—or perhaps because of—severe deformities
of their trajectories. The two- and three-sideband schemes are not single-loop gates;
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Figure 6.4—Phase-space trajectories of the vari-
ous gates (columns) both inside (top row) and far
outside (bottom row) the Lamb–Dicke regime. The
values of the tic marks are the same for all plots
on a row, though the zooms are different. Line
colour indicates time through the gate; it begins in
the dark purple and ends in the light orange. The
Wigner functions of the motional states at thirds of
the gate time are indicated by the dashed contour
lines, scaled down to 25% (top) and 5% (bottom) of
their natural sizes for visibility. The squeezing ef-
fects of the higher-order sidebands can be seen via
deformations of the Wigner function, but the final
overlap is much better for these schemes, corres-
ponding to reduced qubit–motion entanglement.
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under perfect conditions, the number of phase-space loops is largely dictated by
the ratio of the gate time to the principal detuning of the drive on the first sideband.
The two-sideband profile is a two-loop gate, and the three-sideband profile is a
five-loop gate. This explains the different radii of the trajectories; all three schemes
enclose the same area in phase space, but the higher-order approaches repeat loops.
This is not a requirement of the constraints, but in practice the solutions that are
closest to constant-amplitude driving on each sideband and with the lowest power
are typically multi-loop gates.
In addition to the trajectories, the Wigner functions of the motion at various

points throughout the gate are indicated by contour lines. For visibility, these are
scaled down around their centroids four times for the top row and twenty times
for the bottom. The initial states are perfect circles, since the motion begins in a
thermal state. The overlap of the initial and final Wigner states is necessary for
a coherent gate. The scaling here somewhat masks the true overlap, but the gate
fidelities for the bottom row of fig. 6.4 are 71%, 89% and 97.3% respectively.

Coherently applying both first-order sidebands together generates displacements
in phase space. This changes to a squeezing effect for the second-order sidebands,
and an asymmetric skew effect for the third-order transitions. These effects can
clearly be seen in the figure; the motion for the conventional driving pattern largely
retains its shape, but the new schemes produce significant distortions during the
gate operation once the Lamb–Dicke parameter is large. The distortions are not seen
at lower values of 𝜂, since at those coupling strengths, the higher-order processes
have suppressed effects on the states. It is only when the coupling increases that
these can be seen, and it is exactly these non-linear effects that are exploited to
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cancel each other out at the gate time.

6.4 Additional motional modes

So far, and in our published work on this topic104, we have only considered the
driven motional mode. In reality, even if there are only two ions in the trap, there
are more modes present. These are not directly addressed, but any transition driven
on one mode implicitly drives all other modes on their carrier transition, which
has its own non-linearities. We will now briefly discuss some modifications to the
presented scheme that can account for these to low orders. This is introductory
only; we will make several simplifying assumptions that limit the generality, as we
do not yet have the tools to do this completely.

Accounting for multiple modes, labelled with subscript ℓ , the complete laser–ion
interaction Hamiltonian is

Ĥ = 𝑓 (𝑡)
∑︂
𝑗

�̂� ( 𝑗)
+

∏︂
ℓ

exp
(︂
𝑖𝜂𝑗,ℓ

(︁
�̂�†ℓ 𝑒

𝑖𝜅ℓ𝜔𝑧𝑡 + �̂�ℓ𝑒
−𝑖𝜅ℓ𝜔𝑧𝑡

)︁ )︂ + H.c.. (6.36)

The 𝜅ℓ are the mode-dependent modifications to the motional frequencies discussed
in section 3.2 and listed in table 3.2. Using the same methods as section 6.1, this
can be recast into a product of Fourier-series-like forms as

Ĥ = 𝑓 (𝑡)
∑︂
𝑗

�̂� ( 𝑗)
+ 𝑒−

1
2
∑︁

ℓ 𝜂
2
𝑗,ℓ

∏︂
ℓ

∞∑︂
𝑘=−∞

𝑒𝑖𝑘𝜅ℓ𝜔𝑧𝑡�̂�𝑘,ℓ (𝜂𝑗,ℓ) + H.c., (6.37)

where the �̂�𝑘,ℓ motional operators retain the same form as eq. (6.3), but act on the
relevant ladder operators for the mode ℓ .

Let us assume that we are dealing with modes with incommensurate frequencies,
such that there is negligible off-resonant excitation. Further, let us choose that the
principal driving mode is the centre-of-mass (com) mode, which has 𝜅com = 1 and
equal 𝜂𝑗,ℓ = 𝜂ℓ for all ions. If the 𝑘th transition on the com mode is driven for qubit
𝑗 , all other modes participate via their carrier transition with 𝑘 = 0. To illustrate,
if the first-order blue transition is driven, the qubit-promotion component of the
applied operator, ignoring scalar prefactors, is

�̂� ( 𝑗)
+ �̂�1,com

∏︂
ℓ≠com

�̂�0,ℓ ≈ 𝑖�̂� ( 𝑗)
+

(︂
𝜂com�̂�

†
com −

1
2𝜂

3
com�̂�

†2
com�̂�com

)︂ ∏︂
ℓ≠com

(︂
1−𝜂2

𝑗,ℓ�̂�
†
ℓ �̂�ℓ

)︂
. (6.38)

For modes with 𝜂ℓ of the same order of magnitude as 𝜂com, this poses a problem:
there are additional motion-dependent terms of total order 𝜂3 that are not being
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fully cancelled.
We now restrict our analysis to systems where all the relevant ions and modes

have the same magnitude of |𝜂𝑗,ℓ | = 𝜂ℓ for each ion within a given mode. We are
dealing only with terms that are quadratic in the Lamb–Dicke parameters of the
spectator modes, so the distinction between −𝜂 and 𝜂 for different ions is irrelevant.
Because the spectator carrier transitions only introduce even powers of 𝜂, we seek
to cancel out these processes by application of the second-order sidebands on the
spectator modes. We wish to avoid the first-order sidebands in this case because
their inclusion will cause various odd powers of 𝜂 to appear, which would need
to be handled individually. With the second-order sidebands, any higher-order
processes from the driven transitions will quickly rise to orders of 𝜂 that we are
already neglecting.

The perturbative expansion method of section 6.1 can now be applied, with minor
modifications. When finding the lowest-order terms in 𝜂, we now consider the
order of a term 𝜂𝑎1𝜂

𝑏
2 to be 𝑎 + 𝑏, or with some alternate weighting for the different

modes, if desired. We must also modify our prefactors for the different driving
profiles of the sidebands. The new form of eq. (6.5) is

𝑓 (𝑡) = −𝑖𝑒
∑︁

ℓ 𝜂
2
ℓ /2 ∑︂

ℓ

1
𝜂ℓ

∑︂
𝑘>0

(︂
𝑓ℓ,𝑘 (𝑡)𝑒−𝑖𝑘𝜅ℓ𝜔𝑧𝑡 + (−1)𝑘 𝑓 ∗ℓ,𝑘 (𝑡)𝑒𝑖𝑘𝜅ℓ𝜔𝑧𝑡

)︂
. (6.39)

We include the factors of 1/𝜂ℓ separately, and applied only to transitions on the
relevant mode, though the total exponential prefactor is always applicable.
Without any correction, when considering terms up to a total order of 𝜂3, each

spectator mode contributes a thermal dependence via the operator 𝑆𝑦𝜂2
ℓ �̂�

†
ℓ �̂�ℓ . These

terms can be cancelled by driving the relevant modes on their second sidebands.
This would introduce further thermal cross-terms from higher-order processes, but
at the level of 𝜂3, only the leading-order process contributes, which we can use to
cancel the unwanted spectator carrier effects.

Using the same programmatic method as in the previous sections, but updated to
symbolically track the multiple modes, the conditions for nulling non-linear effects
were found to low order. These can be solved by the driving profiles

𝑓com,1(𝑡) = 𝛺 exp(2𝑖𝜖𝑡), 𝑓com,2(𝑡) = 𝛺 exp(𝑖𝜖𝑡), and 𝑓ℓ,2(𝑡) = 𝛺 exp(𝑖𝜖𝑡).
(6.40)

The updated entangling condition for these requires that 𝑥 = 𝛺/𝜖 is a root of

3𝜂2
com𝑥

4 −
(︂
1 +

∑︂
ℓ

𝜂2
ℓ

)︂
𝑥2 + 1

8 = 0, (6.41)
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where the summation is over all driven modes, including the com mode. Note that
despite immediate appearances, this scheme does not drive the second sidebands
of all modes with the same power; each is scaled by the factor of 1/𝜂ℓ in eq. (6.39).
Even the power of the transitions on the com mode are slightly modified from the
earlier scheme, due to the different prefactors between eqs. (6.5) and (6.39). This
latter difference is relatively slight, however.
The methods of this chapter should, in principle, allow us to cancel out higher-

order effects of the carrier transitions from spectator modes, with orders 𝜂4 and
beyond. While I was able to calculate the functional conditions for an ideal gate at
this level of approximation, actually solving all of them simultaneously is rather
difficult. There is no particular reason to assume that it is impossible, but more
insight into the potential forms of the solutions might be needed to make further
progress.

6.5 Outlook

This chapter has developed a system for producing trapped-ion gates that go
beyond the non-linear, weakly coupled regime. This has been a fundamental limit
on the achievable fidelities and speeds in state-of-the-art trapped-ion quantum
gates, as it could never be overcome for conventional gates, no matter the quality
or precision of the experimental control apparatus. The method described here
was a systematic approach to cancelling contributions from undesired non-linear
processes, removing them order-by-order in the coupling strength. In principle,
the methods described here can produce extremely high fidelity two-qubit gates
even without protracted sideband cooling of the various motional modes. This
opens avenues to both high-temperature and high-speed quantum information
processing with trapped ions, with less reset time between different shots of circuits.
Cooling cycles and reset times are among the longest operations in practical ion-
trap quantum computing, and reducing their necessity is an important contribution,
let alone the possible improvements in fidelity scaling.

Themethod produces a set of functional constraints, and does not dictate the exact
form of the solutions. Simulations in this chapter focussed on the simplest, lowest-
power solutions, where each sideband is driven as close to monochromatically as
possible. This is easily achievable for modern control software, but is not a true
necessity. Mathematically, it is simple to combine this gate design with many of the
current pulse-shaping techniques to make gates robust against drifting calibrations.
This includes the multi-tone gates described in chapter 5 to decouple the fidelity
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from qubit-frequency drifts, but also the motional-drift-resilient gates achieved in
other works by amplitude shaping42,110,132 or pulse shaping80.
Let us take the multi-tone schemes of the previous chapter as an example. One

would need to make minor modifications to the numerical optimisations to ensure
that all the incommensurate-frequency conditions from eqs. (6.25) to (6.29) are
maintained, but this can be done manually, simply by choosing the detunings used
on the tones. The entangling condition would already have been satisfied by the
optimiser, and all that is left is to fix the final condition of eq. (6.30). This can be
done—in theory—with a monochromatic driving profile on the second sideband; it
is relatively trivial to carry out the integrations and simply set the amplitude to the
correct value.
It should be noted, however, that the driving on the higher-order sidebands

may not itself be decoupled from the same miscalibrations if done in this manner.
This would be more noticeable in the analytically-derived multitone schemes to
make gates resilient against motional drift110,132. In these, one derives the exact
amplitudes of the different tones by expanding the time-evolution operator in terms
of the frequency error, and using the method of Lagrange multipliers to minimise
the error components. This approach is not as straightforward when multiple
sidebands are involved, but is feasible in principle. One could use the methods
given in this chapter to approximate the generators of the propagators, and then
expand each as a Taylor series to produce an—exceedingly complex—expression
for the final fidelity. This could then be approached with the same techniques as in
previous work to find a complete scheme that is both non-linear and robust against
miscalibrations of the motional mode.

Further, while we have discussed methods to remove the non-linearities entering
from unwanted participation of spectator modes, so far these are limited to gates
performed on ions that participate equally in all the considered modes. The normal
modes in table 3.2 show that few pairs of ions have the same coupling to all possible
modes once there are more than two ions in a trap. It is an open question whether
this scheme could be extended to account for, say, the breathing mode of two
neighbouring ions on one side of a four-ion trap. It is not immediately clear how to
handle the unequal participation. In eq. (6.37), we still assumed a global irradiation
field for the ions. One potential avenue of research is to address the ions individually,
with suitably different laser amplitudes—one can imagine a more complex set of
conditions where even the unequal mode participation might be overcome. As
interesting as it is, however, further work in this vein is beyond the scope of this
thesis.
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Conclusion

My PhD research has been an investigation into the creation and verification of
robust coherence and entanglement in trapped ions. The techniques presented
here have all been working towards a goal of greater, more resilient coherent
control of the quantum behaviour of trapped ions, with a view to enhancing noisy
intermediate-scale quantum information processing in this medium. Going further,
I hope that the work here is one more (small) stepping stone along the path to
large-scale quantum computation, and the realisation of new models of computing.

My work in chapter 4 demonstrated that a general certifier for multilevel coher-
ence could be made robust against false positives, even when the basis of coherence
was not directly accessible to measurement. This went beyond previous work on
the subject, allowing even untrusted coherent manipulations to be made by map-
ping a set of basis states onto a smaller, physically distinct Hilbert space, without
risking the certifier incorrectly claiming the presence of high-order coherence. We
then demonstrated this protocol by numerically finding mapping sequences that
could generalise the Ramsey coherence experiment to higher orders, coherently
mapping two orthogonal subspaces of motional basis states onto different qubit
states for measurement. With the experimental team at Imperial, we implemented
this in real hardware, successfully certifying 3-coherence in the motional state of a
trapped ion, and offering strong evidence in favour of having created 4-coherence.
This method required only a one-dimensional interference pattern, significantly
reducing the number of measurements and experimental complexity necessary to
certify coherence.
Moving to entanglement, chapter 5 presented a modification to the Mølmer–

Sørensen scheme to make two-qubit entangling operations in trapped ions more
resilient to fluctuations in the frequencies of the qubits. This used a multi-tone
approach that has previously found success at decoupling the gate fidelities from
errors in the motional frequency. We saw order-of-magnitude improvements in
the infidelities of the two-qubit gate at errors that would usually cause a system
to leave the fault-tolerance region. This opens up alternative avenues for the
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managing errors in real experimental situations, for example in larger-scale systems
of magnetic-field-sensitive qubits where it becomes near-impossible to completely
control all fluctuating fields over the trapping zones. Still, though, the improvements
seen here were perhaps not as marked as when the same multi-tone parametrisation
is applied to different classes of error110,132, so it seems possible that a more fruitful
strategy here would be to use this scheme to become robust against motional errors,
and use some other decoupling method to protect against qubit miscalibrations,
such as single-qubit dynamic decoupling76.

The most exciting result for the future of ion traps is the method in chapter 6 to
bring trapped-ion quantum computing outside the weakly coupled linear regime it
has been confined to since its inception. We overcame a previously fundamental
restriction on the infidelities of trapped-ion entangling gates, and demonstrated
a systematic method for decoupling the gate operation from the motion to ever-
higher orders. We found in exact simulations that our scheme brought about
improvements in the asymptotic power-law scaling of the gate infidelity with
respect to the ion–motion coupling. Using the trap parameters of the current state
of the art for ion-trap entangling gates107, we showed that our scheme can in theory
support a 2000-fold improvement in the linear-regime error simply by driving a
single additional pair of sidebands, and this increases by several more orders of
magnitude if another pair of transitions are included.
This new multi-sideband scheme opens many new areas of research. Without

modification, it paves the way to trapped-ion quantum computing with hot motion;
state-of-the-art fidelities can be reached, even if the ions are not cooled beyond
the Doppler limit. Further, the method is a systematic way to derive functional
constraints on the driving profiles of different sidebands, which should allow it
to be used in conjunction with existing pulse-shaping methods of making robust
gates, including the multi-tone methods discussed in chapter 5. We sketched the
procedure for unifying a resilient gate scheme with this new, non-linear approach
to entanglement generation.
Additional theoretical work in this vein may also be in cancelling out the non-

linearities that enter from spectator motional modes. We derived a set of constraints
that decouple all relevant modes in which the ions participate equally, such that the
resulting infidelity scaling is of order 𝜂8. We sketched out possible paths forward
to extend this to higher orders of the coupling strength, or to account for motional
modes with unequal ion participation. We also look forwards to the results of an
ongoing experimental collaboration with the ion-trapping group at Imperial, who
hope to implement our schemes in the coming months.
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Ultimately, the true proof of all of these methods is in experimental realisations.
We do not yet know for certain if a quantum advantage is possible in computational
tasks, nor if trapped ions will be the best platform for larger-scale quantum compu-
tation. Still, all of the results presented here are improvements in current techniques
for characterisation and generation of quantum behaviour in ion traps. There is a
long way to go if we are to achieve general-purpose quantum computation, and
the work here represents one more step in that journey.

112



Bibliography

[1] J. Åberg, Quantifying Superposition, ar𝜒 iv:quant-ph/0612146 (2006). Cited on page 43.
[2] I. Arrazola, J. Casanova, J. S. Pedernales, Z.-Y. Wang, E. Solano, and M. B. Plenio, Pulsed

dynamical decoupling for fast and robust two-qubit gates on trapped ions, Physical Review A
97, 052312 (2018). Cited on page 74.

[3] F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature
574, 505 (2019). Cited on page 11.

[4] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, High-Fidelity Quantum
Logic Gates Using Trapped-Ion Hyperfine Qubits, Physical Review Letters 117, 060504 (2016),
ar𝜒 iv:1512.04600. Cited on pages 10, 23, 38, 74, and 91.

[5] P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, and D. N. Stacey,
Measurement of the Lifetime of the 3𝑑2𝐷 5

2
State in 40Ca+, Physical Review A 62, 032503 (2000).

Cited on page 25.
[6] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying Coherence, Physical Review Letters

113, 140401 (2014), ar𝜒 iv:1311.0275. Cited on pages 41 and 43.
[7] A. Ben-Kish, B. DeMarco, V. Meyer, M. Rowe, J. Britton, W. M. Itano, B. M. Jelenković,

C. Langer, D. Leibfried, T. Rosenband, and D. J. Wineland, Experimental Demonstration of
a Technique to Generate Arbitrary Quantum Superposition States of a Harmonically Bound
Spin-1/2 Particle, Physical Review Letters 90, 037902 (2003). Cited on page 53.

[8] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, Towards fault-tolerant quantum computing
with trapped ions, Nature Physics 4, 463 (2008), ar𝜒 iv:0803.2798. Cited on pages 26, 74, and 75.

[9] P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian
model of computers as represented by Turing machines, Journal of Statistical Physics 22, 563
(1980). Cited on page 10.

[10] P. Benioff, Quantum mechanical Hamiltonian models of Turing machines, Journal of Statistical
Physics 29, 515 (1982). Cited on page 10.

[11] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters,
Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels, Physical
Review Letters 76, 722 (1996). Cited on page 41.

[12] A. Bermudez, P. O. Schmidt, M. B. Plenio, and A. Retzker, Robust trapped-ion quantum
logic gates by continuous dynamical decoupling, Physical Review A 85, 040302(R) (2012),
ar𝜒 iv:1110.1870. Cited on page 75.

[13] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G.
Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, and
M. Müller, Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum
Computation, Physical Review X 7, 041061 (2017), ar𝜒 iv:1705.02771. Cited on page 23.

[14] R. Blümel, N. Grzesiak, N. H. Nguyen, A. M. Green, M. Li, A. Maksymov, N. M. Linke, and
Y. Nam, Efficient Stabilized Two-Qubit Gates on a Trapped-Ion Quantum Computer, Physical
Review Letters 126, 220503 (2021). Cited on pages 11 and 89.

[15] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keesling,
N. Maskara, H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin, A quantum processor based on
coherent transport of entangled atom arrays, Nature 604, 451 (2022). Cited on page 11.

[16] A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra: The Theorem of Campbell,
Baker, Hausdorff and Dynkin, Lecture Notes in Mathematics, Vol. 2034 (Springer-Verlag, Berlin,
Heidelberg, 2012). Cited on page 20.

113

https://arxiv.org/abs/quant-ph/0612146
http://arxiv.org/abs/quant-ph/0612146
https://doi.org/10.1103/PhysRevA.97.052312
https://doi.org/10.1103/PhysRevA.97.052312
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.117.060504
https://arxiv.org/abs/1512.04600
https://doi.org/10.1103/PhysRevA.62.032503
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://arxiv.org/abs/1311.0275
https://doi.org/10.1103/PhysRevLett.90.037902
https://doi.org/10.1038/nphys961
https://arxiv.org/abs/0803.2798
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01342185
https://doi.org/10.1007/BF01342185
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevA.85.040302
https://arxiv.org/abs/1110.1870
https://doi.org/10.1103/PhysRevX.7.041061
https://arxiv.org/abs/1705.02771
https://doi.org/10.1103/PhysRevLett.126.220503
https://doi.org/10.1103/PhysRevLett.126.220503
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1007/978-3-642-22597-0
https://doi.org/10.1007/978-3-642-22597-0


Bibliography

[17] B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules (Longman, London ; New
York, 1983). Cited on page 30.

[18] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University
Press, Oxford ; New York, 2002). Cited on page 21.

[19] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Trapped-ion quantum computing:
Progress and challenges, Applied Physics Reviews 6, 021314 (2019), ar𝜒 iv:1904.04178. Cited
on page 75.

[20] A. Castellini, R. Lo Franco, L. Lami, A. Winter, G. Adesso, and G. Compagno,
Indistinguishability-enabled coherence for quantum metrology, Physical Review A 100, 012308
(2019), ar𝜒 iv:1903.10582. Cited on page 42.

[21] L. H. Chan, K. Chen, C. Li, C. W. Wong, and C. Y. Yau, On higher-order moment and cumulant
estimation, Journal of Statistical Computation and Simulation 90, 747 (2020). Cited on page 61.

[22] E. Chitambar and G. Gour, Quantum resource theories, Reviews of Modern Physics 91, 025001
(2019). Cited on pages 16 and 43.

[23] T. Choi, S. Debnath, T. A. Manning, C. Figgatt, Z.-X. Gong, L.-M. Duan, and C. Monroe,
Optimal Quantum Control of Multimode Couplings between Trapped Ion Qubits for Scalable
Entanglement, Physical Review Letters 112, 190502 (2014), ar𝜒 iv:1401.1575. Cited on page 74.

[24] I. L. Chuang, N. Gershenfeld, and M. Kubinec, Experimental Implementation of Fast Quantum
Searching, Physical Review Letters 80, 3408 (1998). Cited on page 10.

[25] J. I. Cirac and P. Zoller, Quantum Computations with Cold Trapped Ions, Physical Review
Letters 74, 4091 (1995), ar𝜒 iv:quant-ph/0305129. Cited on pages 36 and 74.

[26] R. Cools, An encyclopaedia of cubature formulas, Journal of Complexity 19, 445 (2003). Cited
on page 84.

[27] R. Cools and P. Rabinowitz, Monomial cubature rules since “Stroud”: A compilation, Journal of
Computational and Applied Mathematics 48, 309 (1993). Cited on page 84.

[28] O. Corfield, Quantum Coherence in Trapped Ions, Ph.D. thesis, Imperial College London (2022).
Cited on pages 27, 32, 64, and 68.

[29] O. Corfield, J. Lishman, C. Lee, J. Mosca Toba, G. Porter, J. M. Heinrich, S. C.Webster, F. Mintert,
and R. C. Thompson, Certifying Multilevel Coherence in the Motional State of a Trapped Ion,
PRX Quantum 2, 040359 (2021), ar𝜒 iv:2106.12939. Cited on pages 2, 12, and 41.

[30] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, Demonstra-
tion of a small programmable quantum computer with atomic qubits, Nature 536, 63 (2016),
ar𝜒 iv:1603.04512. Cited on pages 25 and 74.

[31] H. Dehmelt, Radiofrequency Spectroscopy of Stored Ions I: Storage, in Advances in Atomic and
Molecular Physics, Vol. 3 (Elsevier, 1968) pp. 53–72. Cited on page 23.

[32] D. Deutsch, Quantum Theory, the Church-Turing Principle and the Universal Quantum Com-
puter, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
400, 97 (1985). Cited on page 10.

[33] D. Deutsch, Quantum Computational Networks, Proceedings of the Royal Society A 425, 73
(1989). Cited on page 10.

[34] B. Dive, N. Koukoulekidis, S. Mousafeiris, and F. Mintert, Characterisation of multi-level
quantum coherence without ideal measurements, Physical Review Research 2, 013220 (2020),
ar𝜒 iv:1901.08599. Cited on pages 42, 45, 46, 47, 50, 51, and 71.

[35] D. P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschritte der
Physik 48, 771 (2000), ar𝜒 iv:quant-ph/0002077. Cited on pages 11 and 24.

[36] D. P. DiVincenzo and P. W. Shor, Fault-Tolerant Error Correction with Efficient Quantum Codes,
Physical Review Letters 77, 3260 (1996). Cited on page 11.

[37] W. Dür and H. J. Briegel, Entanglement purification and quantum error correction, Reports on
Progress in Physics 70, 1381 (2007). Cited on page 16.

114

https://doi.org/10.1063/1.5088164
https://arxiv.org/abs/1904.04178
https://doi.org/10.1103/PhysRevA.100.012308
https://doi.org/10.1103/PhysRevA.100.012308
https://arxiv.org/abs/1903.10582
https://doi.org/10.1080/00949655.2019.1700987
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/PhysRevLett.112.190502
https://arxiv.org/abs/1401.1575
https://doi.org/10.1103/PhysRevLett.80.3408
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1103/PhysRevLett.74.4091
https://arxiv.org/abs/quant-ph/0305129
https://doi.org/10.1016/S0885-064X(03)00011-6
https://doi.org/10.1016/0377-0427(93)90027-9
https://doi.org/10.1016/0377-0427(93)90027-9
https://doi.org/10.1103/PRXQuantum.2.040359
https://arxiv.org/abs/2106.12939
https://doi.org/10.1038/nature18648
https://arxiv.org/abs/1603.04512
https://doi.org/10.1016/S0065-2199(08)60170-0
https://doi.org/10.1016/S0065-2199(08)60170-0
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1103/PhysRevResearch.2.013220
https://arxiv.org/abs/1901.08599
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://arxiv.org/abs/quant-ph/0002077
https://doi.org/10.1103/PhysRevLett.77.3260
https://doi.org/10.1088/0034-4885/70/8/R03
https://doi.org/10.1088/0034-4885/70/8/R03


Bibliography

[38] J. Eschner, G. Morigi, F. Schmidt-Kaler, and R. Blatt, Laser cooling of trapped ions, Journal of
the Optical Society of America B 20, 1003 (2003). Cited on page 24.

[39] R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics
21, 467 (1982). Cited on page 10.

[40] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill,
D. Leibfried, and D. J. Wineland, High-Fidelity Universal Gate Set for 9Be+ Ion Qubits, Physical
Review Letters 117, 060505 (2016), ar𝜒 iv:1604.00032. Cited on pages 10, 23, 38, 74, and 91.

[41] S. A. Gardiner, J. I. Cirac, and P. Zoller, Nonclassical states and measurement of general motional
observables of a trapped ion, Physical Review A 55, 1683 (1997). Cited on page 53.

[42] F. Haddadfarshi and F. Mintert, High fidelity quantum gates of trapped ions in the presence
of motional heating, New Journal of Physics 18, 123007 (2016). Cited on pages 75, 79, 88,
and 109.

[43] H. Häffner, S. Gulde, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, and
R. Blatt, Precision Measurement and Compensation of Optical Stark Shifts for an Ion-Trap
Quantum Processor, Physical Review Letters 90, 4 (2003), ar𝜒 iv:physics/0212040. Cited on
page 31.

[44] E. L. Hahn, Spin Echoes, Physical Review 80, 580 (1950). Cited on page 74.

[45] P. C. Haljan, P. J. Lee, K.-A. Brickman, M. Acton, L. Deslauriers, and C. Monroe, Entanglement
of trapped-ion clock states, Physical Review A 72, 062316 (2005). Cited on page 74.

[46] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, 2nd ed.,
Graduate Texts in Mathematics, Vol. 222 (Springer International Publishing, Cham, 2015).
Cited on pages 20 and 95.

[47] C. R. Harris et al., Array programming with NumPy, Nature 585, 357 (2020). Cited on page 12.

[48] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey,
and D. M. Lucas, High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion
Quantum Bit, Physical Review Letters 113, 220501 (2014), ar𝜒 iv:1403.1524. Cited on pages 25
and 74.

[49] T. P. Harty, M. A. Sepiol, D. T. C. Allcock, C. J. Ballance, J. E. Tarlton, and D. M. Lucas, High-
Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves, Physical Review Letters
117, 140501 (2016), ar𝜒 iv:1606.08409. Cited on pages 25, 26, and 75.

[50] M. Harvey, Imperial College Research Computing Service (2017). Cited on pages 12 and 51.

[51] M. Hillery, Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a
variation, Physical Review A 93, 012111 (2016). Cited on page 41.

[52] J. P. Home, M. J. McDonnell, D. M. Lucas, G. Imreh, B. C. Keitch, D. J. Szwer, N. R. Thomas,
S. C. Webster, D. N. Stacey, and A. M. Steane, Deterministic entanglement and tomography of
ion–spin qubits, New Journal of Physics 8, 188 (2006). Cited on page 25.

[53] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two
photons by interference, Physical Review Letters 59, 2044 (1987). Cited on pages 14 and 42.

[54] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: Necessary and
sufficient conditions, Physics Letters A 223, 1 (1996). Cited on page 41.

[55] R. Horodecki, Quantum Information, Acta Physica Polonica A 139, 197 (2021). Cited on
page 41.

[56] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,Quantum entanglement, Reviews
of Modern Physics 81, 865 (2009). Cited on pages 16 and 41.

[57] P. Hrmo, Ground State Cooling of the Radial Motion of a Single Ion in a Penning Trap and
Coherent Manipulation of Small Numbers of Ions, Ph.D. thesis, Imperial College London (2018).
Cited on pages 25 and 27.

115

https://doi.org/10.1364/JOSAB.20.001003
https://doi.org/10.1364/JOSAB.20.001003
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PhysRevLett.117.060505
https://doi.org/10.1103/PhysRevLett.117.060505
https://arxiv.org/abs/1604.00032
https://doi.org/10.1103/PhysRevA.55.1683
https://doi.org/10.1088/1367-2630/18/12/123007
https://doi.org/10.1103/PhysRevLett.90.143602
https://arxiv.org/abs/physics/0212040
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1103/PhysRevA.72.062316
https://doi.org/10.1007/978-3-319-13467-3
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1103/PhysRevLett.113.220501
https://arxiv.org/abs/1403.1524
https://doi.org/10.1103/PhysRevLett.117.140501
https://doi.org/10.1103/PhysRevLett.117.140501
https://arxiv.org/abs/1606.08409
https://doi.org/10.14469/HPC/2232
https://doi.org/10.1103/PhysRevA.93.012111
https://doi.org/10.1088/1367-2630/8/9/188
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.12693/APhysPolA.139.197
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
http://hdl.handle.net/10044/1/61471


Bibliography

[58] A. C. Hughes, V. M. Schäfer, K. Thirumalai, D. P. Nadlinger, S. R. Woodrow, D. M. Lucas, and
C. J. Ballance, Benchmarking a High-Fidelity Mixed-Species Entangling Gate, Physical Review
Letters 125, 080504 (2020). Cited on page 23.

[59] D. F. V. James,Quantum dynamics of cold trapped ions with application to quantum computation,
Applied Physics B: Lasers and Optics 66, 181 (1998), ar𝜒 iv:quant-ph/9702053. Cited on page 32.

[60] V. Jarlaud, Sideband Cooling of Ion Coulomb Crystals in a Penning Trap, Ph.D. thesis, Imperial
College London (2018). Cited on page 25.

[61] J. Johansson, P. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open
quantum systems, Computer Physics Communications 184, 1234 (2013), ar𝜒 iv:1211.6518.
Cited on pages 12 and 79.

[62] J. A. Jones, M. Mosca, and R. H. Hansen, Implementation of a quantum search algorithm on a
quantum computer, Nature 393, 344 (1998). Cited on page 10.

[63] M. Joshi, Coherent Dynamics of Trapped Ions Within and Outside the Lamb-Dicke Regime, Ph.D.
thesis, Imperial College London (2018). Cited on page 25.

[64] E. Knill,Quantum computing with realistically noisy devices, Nature 434, 39 (2005), ar𝜒 iv:quant-
ph/0410199. Cited on pages 79 and 86.

[65] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear op-
tical quantum computing with photonic qubits, Reviews of Modern Physics 79, 135 (2007),
ar𝜒 iv:quant-ph/0512071. Cited on page 11.

[66] K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, The extraction of work from
quantum coherence, New Journal of Physics 18, 023045 (2016), ar𝜒 iv:1506.07875. Cited on
page 41.

[67] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist, and A. G.
White, Experimental Demonstration of a Compiled Version of Shor’s Algorithm with Quantum
Entanglement, Physical Review Letters 99, 250505 (2007). Cited on page 10.

[68] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, andW. K. Hensinger,
Blueprint for a microwave trapped ion quantum computer, Science Advances 3, e1601540 (2017),
ar𝜒 iv:1508.00420. Cited on page 75.

[69] F. Levi and F. Mintert, A quantitative theory of coherent delocalization, New Journal of Physics
16, 033007 (2014). Cited on pages 41 and 43.

[70] J. Lishman, Code accompaniment to (Corfield, Lishman et al., 2021) (2021). Cited on page 58.
[71] J. Lishman, Code accompaniment to (Sameti, Lishman and Mintert, 2021) (2021). Cited on

pages 98 and 102.
[72] J. Lishman and F. Mintert, Trapped-ion entangling gates robust against qubit frequency errors,

Physical Review Research 2, 033117 (2020), ar𝜒 iv:2004.07253. Cited on pages 2, 12, and 74.
[73] R. Loudon, The Quantum Theory of Light, 3rd ed., Oxford Science Publications (Oxford

University Press, Oxford ; New York, 2000). Cited on page 30.
[74] C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, Demonstration of a Compiled Version of Shor’s

Quantum Factoring Algorithm Using Photonic Qubits, Physical Review Letters 99, 250504
(2007). Cited on page 10.

[75] W. Magnus, On the exponential solution of differential equations for a linear operator, Commu-
nications on Pure and Applied Mathematics 7, 649 (1954). Cited on page 20.

[76] T. Manovitz, A. Rotem, R. Shaniv, I. Cohen, Y. Shapira, N. Akerman, A. Retzker, and R. Ozeri,
Fast Dynamical Decoupling of the Mølmer-Sørensen Entangling Gate, Physical Review Letters
119, 220505 (2017). Cited on pages 89 and 111.

[77] T. Manovitz, Y. Shapira, L. Gazit, N. Akerman, and R. Ozeri, Trapped-Ion Quantum Computer
with Robust Entangling Gates and Quantum Coherent Feedback, PRX Quantum 3, 010347 (2022).
Cited on page 90.

116

https://doi.org/10.1103/PhysRevLett.125.080504
https://doi.org/10.1103/PhysRevLett.125.080504
https://doi.org/10.1007/s003400050373
https://arxiv.org/abs/quant-ph/9702053
http://hdl.handle.net/10044/1/63832
https://doi.org/10.1016/j.cpc.2012.11.019
https://arxiv.org/abs/1211.6518
https://doi.org/10.1038/30687
http://hdl.handle.net/10044/1/61532
http://hdl.handle.net/10044/1/61532
https://doi.org/10.1038/nature03350
https://arxiv.org/abs/quant-ph/0410199
https://arxiv.org/abs/quant-ph/0410199
https://doi.org/10.1103/RevModPhys.79.135
https://arxiv.org/abs/quant-ph/0512071
https://doi.org/10.1088/1367-2630/18/2/023045
https://arxiv.org/abs/1506.07875
https://doi.org/10.1103/PhysRevLett.99.250505
https://doi.org/10.1126/sciadv.1601540
https://arxiv.org/abs/1508.00420
https://doi.org/10.1088/1367-2630/16/3/033007
https://doi.org/10.1088/1367-2630/16/3/033007
https://github.com/ImperialCQD/Certifying-Multilevel-Coherence-in-the-Motional-State-of-a-Trapped-Ion
https://github.com/ImperialCQD/Strong-Coupling-Quantum-Logic-of-Trapped-Ions
https://doi.org/10.1103/PhysRevResearch.2.033117
https://arxiv.org/abs/2004.07253
https://doi.org/10.1103/PhysRevLett.99.250504
https://doi.org/10.1103/PhysRevLett.99.250504
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1103/PhysRevLett.119.220505
https://doi.org/10.1103/PhysRevLett.119.220505
https://doi.org/10.1103/PRXQuantum.3.010347


Bibliography

[78] D. Manzano, A short introduction to the Lindblad master equation, AIP Advances 10, 025106
(2020). Cited on page 21.

[79] G. J. Milburn, S. Schneider, and D. F. V. James, Ion Trap Quantum Computing With Warm Ions,
Fortschritte der Physik 48, 801 (2000). Cited on page 88.

[80] A. R. Milne, C. L. Edmunds, C. Hempel, F. Roy, S. Mavadia, and M. J. Biercuk, Phase-Modulated
Entangling Gates Robust to Static and Time-Varying Errors, Physical Review Applied 13, 024022
(2020), ar𝜒 iv:1808.10462. Cited on pages 75, 89, and 109.

[81] F. Mintert and C. Wunderlich, Ion-Trap Quantum Logic Using Long-Wavelength Radiation,
Physical Review Letters 87, 257904 (2001), ar𝜒 iv:quant-ph/0104041. Cited on page 25.

[82] K. Mølmer and A. Sørensen, Multiparticle Entanglement of Hot Trapped Ions, Physical Review
Letters 82, 1835 (1999). Cited on page 38.

[83] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Demonstration of a
Fundamental Quantum Logic Gate, Physical Review Letters 75, 4714 (1995). Cited on pages
10, 25, and 36.

[84] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, Large-
scale modular quantum-computer architecture with atomic memory and photonic interconnects,
Physical Review A 89, 022317 (2014). Cited on page 75.

[85] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hänsel,
M. Hennrich, and R. Blatt, 14-Qubit Entanglement: Creation and Coherence, Physical Review
Letters 106, 130506 (2011). Cited on page 26.

[86] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman,
D. N. Stacey, A. M. Steane, and D. M. Lucas, High-Fidelity Readout of Trapped-Ion Qubits,
Physical Review Letters 100, 200502 (2008). Cited on page 25.

[87] W. Nagourney, J. Sandberg, and H. Dehmelt, Shelved optical electron amplifier: Observation of
quantum jumps, Physical Review Letters 56, 2797 (1986). Cited on page 25.

[88] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed.
(Cambridge University Press, Cambridge ; New York, 2010). Cited on page 14.

[89] D. K. L. Oi and J. Åberg, Fidelity and Coherence Measures from Interference, Physical Review
Letters 97, 220404 (2006), ar𝜒 iv:quant-ph/0603157. Cited on page 44.

[90] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe,
Manipulation and detection of a trapped Yb+ hyperfine qubit, Physical Review A 76, 052314
(2007). Cited on page 25.

[91] W. Paul, Electromagnetic traps for charged and neutral particles, Reviews of Modern Physics
62, 531 (1990). Cited on page 23.

[92] A. Peres, Separability Criterion for Density Matrices, Physical Review Letters 77, 1413 (1996).
Cited on pages 41 and 42.

[93] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin,
M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis, Demonstration of the
trapped-ion quantum CCD computer architecture, Nature 592, 209 (2021). Cited on pages 11,
25, and 89.

[94] I. Pogorelov et al., Compact Ion-Trap Quantum Computing Demonstrator, PRX Quantum 2,
020343 (2021). Cited on page 26.

[95] U. G. Poschinger, G. Huber, F. Ziesel, M. Deiß, M. Hettrich, S. A. Schulz, K. Singer, G. Poulsen,
M. Drewsen, R. J. Hendricks, and F. Schmidt-Kaler, Coherent manipulation of a 40Ca+ spin
qubit in a micro ion trap, Journal of Physics B: Atomic, Molecular and Optical Physics 42,
154013 (2009). Cited on page 25.

[96] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed.
(Cambridge University Press, 2007). Cited on pages 50, 79, 80, 83, and 84.

117

https://doi.org/10.1063/1.5115323
https://doi.org/10.1063/1.5115323
https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3978%28200009%2948%3A9/11%3C801%3A%3AAID-PROP801%3E3.0.CO%3B2-1
https://doi.org/10.1103/PhysRevApplied.13.024022
https://doi.org/10.1103/PhysRevApplied.13.024022
https://arxiv.org/abs/1808.10462
https://doi.org/10.1103/PhysRevLett.87.257904
https://arxiv.org/abs/quant-ph/0104041
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/PhysRevLett.75.4714
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.100.200502
https://doi.org/10.1103/PhysRevLett.56.2797
https://doi.org/10.1103/PhysRevLett.97.220404
https://doi.org/10.1103/PhysRevLett.97.220404
https://arxiv.org/abs/quant-ph/0603157
https://doi.org/10.1103/PhysRevA.76.052314
https://doi.org/10.1103/PhysRevA.76.052314
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1103/PRXQuantum.2.020343
https://doi.org/10.1103/PRXQuantum.2.020343
https://doi.org/10.1088/0953-4075/42/15/154013
https://doi.org/10.1088/0953-4075/42/15/154013
http://numerical.recipes/


Bibliography

[97] S. Rana, P. Parashar, and M. Lewenstein, Trace-distance measure of coherence, Physical Review
A 93, 012110 (2016). Cited on page 43.

[98] M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schmidt, T. K. Körber, W. Hänsel, H. Häffner,
C. F. Roos, and R. Blatt, Process Tomography of Ion Trap Quantum Gates, Physical Review
Letters 97, 220407 (2006), ar𝜒 iv:quant-ph/0609228. Cited on page 26.

[99] M. Ringbauer, T. R. Bromley, M. Cianciaruso, L. Lami, W. Y. S. Lau, G. Adesso, A. G. White,
A. Fedrizzi, and M. Piani, Certification and Quantification of Multilevel Quantum Coherence,
Physical Review X 8, 041007 (2018), ar𝜒 iv:1707.05282. Cited on pages 42 and 43.

[100] J. Roffe, Quantum error correction: An introductory guide, Contemporary Physics 60, 226
(2019). Cited on page 11.

[101] C. F. Roos, Ion trap quantum gates with amplitude-modulated laser beams, New Journal of
Physics 10, 013002 (2008), ar𝜒 iv:0710.1204. Cited on pages 37 and 92.

[102] T. Ruster, C. T. Schmiegelow, H. Kaufmann, C. Warschburger, F. Schmidt-Kaler, and U. G.
Poschinger, A long-lived Zeeman trapped-ion qubit, Applied Physics B 122, 254 (2016). Cited
on page 25.

[103] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A.
Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, Experimental entanglement of four
particles, Nature 404, 256 (2000). Cited on pages 38 and 75.

[104] M. Sameti, J. Lishman, and F. Mintert, Strong-coupling quantum logic of trapped ions, Physical
Review A 103, 052603 (2021), ar𝜒 iv:2003.11718. Cited on pages 2, 12, 91, and 106.

[105] J. P. Santos, L. C. Céleri, G. T. Landi, and M. Paternostro, The role of quantum coherence in
non-equilibrium entropy production, npj Quantum Information 5, 23 (2019), ar𝜒 iv:1707.08946.
Cited on page 41.

[106] T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, Observation of Quantum Jumps, Physical
Review Letters 57, 1696 (1986). Cited on page 25.

[107] V. M. Schäfer, C. J. Ballance, K. Thirumalai, L. J. Stephenson, T. G. Ballance, A. M. Steane,
and D. M. Lucas, Fast quantum logic gates with trapped-ion qubits, Nature 555, 75 (2018),
ar𝜒 iv:1709.06952. Cited on pages 23, 26, 32, 75, 91, 104, and 111.

[108] F. Schmidt-Kaler, H. Häffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher,
W. Hänsel, J. Eschner, C. F. Roos, and R. Blatt, How to realize a universal quantum gate with
trapped ions, Applied Physics B 77, 789 (2003), ar𝜒 iv:quant-ph/0312162. Cited on page 25.

[109] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher,
C. F. Roos, J. Eschner, and R. Blatt, Realization of the Cirac–Zoller controlled-NOT quantum
gate, Nature 422, 408 (2003). Cited on pages 25 and 36.

[110] Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, and R. Ozeri, Robust entanglement gates for
trapped-ion qubits, Physical Review Letters 121, 180502 (2018), ar𝜒 iv:1805.06806. Cited on
pages 75, 79, 88, 90, 109, and 111.

[111] H.-L. Shi, S.-Y. Liu, X.-H. Wang, W.-L. Yang, Z.-Y. Yang, and H. Fan, Coherence depletion in
the Grover quantum search algorithm, Physical Review A 95, 032307 (2017), ar𝜒 iv:1610.08656.
Cited on page 41.

[112] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proceed-
ings 35th Annual Symposium on Foundations of Computer Science (IEEE Comput. Soc. Press,
1994) pp. 124–134. Cited on page 10.

[113] U. Skosana and M. Tame, Demonstration of Shor’s factoring algorithm for N = 21 on IBM
quantum processors, Scientific Reports 11, 16599 (2021). Cited on page 10.

[114] E. Solano, R. L. de Matos Filho, and N. Zagury, Deterministic Bell states and measurement of
the motional state of two trapped ions, Physical Review A 59, R2539 (1999). Cited on page 38.

[115] A. Sørensen and K. Mølmer, Quantum Computation with Ions in Thermal Motion, Physical
Review Letters 82, 1971 (1999), ar𝜒 iv:quant-ph/9810039. Cited on pages 37, 38, and 74.

118

https://doi.org/10.1103/PhysRevA.93.012110
https://doi.org/10.1103/PhysRevA.93.012110
https://doi.org/10.1103/PhysRevLett.97.220407
https://doi.org/10.1103/PhysRevLett.97.220407
https://arxiv.org/abs/quant-ph/0609228
https://doi.org/10.1103/PhysRevX.8.041007
https://arxiv.org/abs/1707.05282
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1088/1367-2630/10/1/013002
https://arxiv.org/abs/0710.1204
https://doi.org/10.1007/s00340-016-6527-4
https://doi.org/10.1038/35005011
https://doi.org/10.1103/PhysRevA.103.052603
https://doi.org/10.1103/PhysRevA.103.052603
https://arxiv.org/abs/2003.11718
https://doi.org/10.1038/s41534-019-0138-y
https://arxiv.org/abs/1707.08946
https://doi.org/10.1103/PhysRevLett.57.1696
https://doi.org/10.1103/PhysRevLett.57.1696
https://doi.org/10.1038/nature25737
https://arxiv.org/abs/1709.06952
https://doi.org/10.1007/s00340-003-1346-9
https://arxiv.org/abs/quant-ph/0312162
https://doi.org/10.1038/nature01494
https://doi.org/10.1103/PhysRevLett.121.180502
https://arxiv.org/abs/1805.06806
https://doi.org/10.1103/PhysRevA.95.032307
https://arxiv.org/abs/1610.08656
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1103/PhysRevA.59.R2539
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1103/PhysRevLett.82.1971
https://arxiv.org/abs/quant-ph/9810039


Bibliography

[116] A. Sørensen and K. Mølmer, Entanglement and quantum computation with ions in thermal
motion, Physical Review A 62, 022311 (2000), ar𝜒 iv:quant-ph/0002024. Cited on pages 37, 38,
74, and 88.

[117] R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland, A. Kwiatkowski, S. Glancy, E. Knill,
D. J. Wineland, D. Leibfried, A. C. Wilson, D. T. C. Allcock, and D. H. Slichter, High-fidelity
laser-free universal control of trapped ion qubits, Nature 597, 209 (2021). Cited on page 23.

[118] L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance, K. Thirumalai,
J. F. Goodwin, D. M. Lucas, and C. J. Ballance, High-Rate, High-Fidelity Entanglement of Qubits
Across an Elementary Quantum Network, Physical Review Letters 124, 110501 (2020). Cited
on page 75.

[119] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quantum coherence as a resource,
Reviews of Modern Physics 89, 041003 (2017). Cited on pages 41 and 43.

[120] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Measuring Quantum Coherence
with Entanglement, Physical Review Letters 115, 020403 (2015). Cited on page 43.

[121] A. H. Stroud, Approximate Calculation of Multiple Integrals, 1st ed. (Prentice-Hall, 1971). Cited
on page 84.

[122] R. T. Sutherland, R. Srinivas, S. C. Burd, D. Leibfried, A. C. Wilson, D. J. Wineland, D. T. C.
Allcock, D. H. Slichter, and S. B. Libby, Versatile laser-free trapped-ion entangling gates, New
Journal of Physics 21, 033033 (2019), ar𝜒 iv:1810.08300. Cited on page 75.

[123] S. Szalay, Multipartite entanglement measures, Physical Review A 92, 042329 (2015),
ar𝜒 iv:1503.06071. Cited on page 16.

[124] N. Timoney, I. Baumgart, M. Johanning, A. F. Varón, M. B. Plenio, A. Retzker, and C. Wun-
derlich, Quantum gates and memory using microwave-dressed states, Nature 476, 185 (2011).
Cited on page 25.

[125] Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and
D. J. Wineland, Deterministic Entanglement of Two Trapped Ions, Physical Review Letters 81,
3631 (1998). Cited on page 25.

[126] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang,
Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic reson-
ance, Nature 414, 883 (2001). Cited on page 10.

[127] L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems,
Physical Review A 58, 2733 (1998). Cited on page 74.

[128] P. Virtanen et al., SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nature
Methods 17, 261 (2020). Cited on pages 12 and 79.

[129] K. von Prillwitz, Ł. Rudnicki, and F. Mintert, Contrast in multipath interference and quantum
coherence, Physical Review A 92, 052114 (2015), ar𝜒 iv:1409.1814. Cited on pages 44 and 45.

[130] P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang, and K. Kim,
Single ion qubit with estimated coherence time exceeding one hour, Nature Communications
12, 233 (2021). Cited on page 25.

[131] Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan, D. Yum, and K. Kim,
Single-qubit quantum memory exceeding ten-minute coherence time, Nature Photonics 11, 646
(2017), ar𝜒 iv:1701.04195. Cited on page 25.

[132] A. E. Webb, S. C. Webster, S. Collingbourne, D. Bretaud, A. M. Lawrence, S. Weidt, F. Mintert,
and W. K. Hensinger, Resilient Entangling Gates for Trapped Ions, Physical Review Letters 121,
180501 (2018), ar𝜒 iv:1805.07351. Cited on pages 75, 79, 88, 89, 90, 109, and 111.

[133] S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin, and W. K. Hensinger, Simple Manipulation
of a Microwave Dressed-State Ion Qubit, Physical Review Letters 111, 140501 (2013). Cited on
page 25.

119

https://doi.org/10.1103/PhysRevA.62.022311
https://arxiv.org/abs/quant-ph/0002024
https://doi.org/10.1038/s41586-021-03809-4
https://doi.org/10.1103/PhysRevLett.124.110501
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1088/1367-2630/ab0be5
https://doi.org/10.1088/1367-2630/ab0be5
https://arxiv.org/abs/1810.08300
https://doi.org/10.1103/PhysRevA.92.042329
https://arxiv.org/abs/1503.06071
https://doi.org/10.1038/nature10319
https://doi.org/10.1103/PhysRevLett.81.3631
https://doi.org/10.1103/PhysRevLett.81.3631
https://doi.org/10.1038/414883a
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevA.92.052114
https://arxiv.org/abs/1409.1814
https://doi.org/10.1038/s41467-020-20330-w
https://doi.org/10.1038/s41467-020-20330-w
https://doi.org/10.1038/s41566-017-0007-1
https://doi.org/10.1038/s41566-017-0007-1
https://arxiv.org/abs/1701.04195
https://doi.org/10.1103/PhysRevLett.121.180501
https://doi.org/10.1103/PhysRevLett.121.180501
https://arxiv.org/abs/1805.07351
https://doi.org/10.1103/PhysRevLett.111.140501


Bibliography

[134] S. Weidt, J. Randall, S. C. Webster, K. Lake, A. E. Webb, I. Cohen, T. Navickas, B. Lekitsch,
A. Retzker, and W. K. Hensinger, Trapped-Ion Quantum Logic with Global Radiation Fields,
Physical Review Letters 117, 220501 (2016), ar𝜒 iv:1603.03384. Cited on page 25.

[135] G. Wendin, Quantum information processing with superconducting circuits: A review, Reports
on Progress in Physics 80, 106001 (2017), ar𝜒 iv:1610.02208. Cited on page 11.

[136] E. B. Wilson, Probable Inference, the Law of Succession, and Statistical Inference, Journal of the
American Statistical Association 22, 209 (1927). Cited on page 61.

[137] A. Winter and D. Yang, Operational Resource Theory of Coherence, Physical Review Letters
116, 120404 (2016), ar𝜒 iv:1506.07975. Cited on page 43.

[138] G. K. Woodgate, Elementary Atomic Structure, 2nd ed. (Clarendon Press, Oxford, 1980). Cited
on page 30.

[139] K. Wright et al., Benchmarking an 11-qubit quantum computer, Nature Communications 10,
5464 (2019). Cited on page 74.

[140] G. Zarantonello, H. Hahn, J. Morgner, M. Schulte, A. Bautista-Salvador, R. F. Werner,
K. Hammerer, and C. Ospelkaus, Robust and Resource-Efficient Microwave Near-Field En-
tangling 9Be+ Gate, Physical Review Letters 123, 260503 (2019). Cited on page 75.

[141] E. J. Zhang et al., High-fidelity superconducting quantum processors via laser-annealing of
transmon qubits, ar𝜒 iv:2012.08475 (2020). Cited on page 11.

120

https://doi.org/10.1103/PhysRevLett.117.220501
https://arxiv.org/abs/1603.03384
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088/1361-6633/aa7e1a
https://arxiv.org/abs/1610.02208
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://arxiv.org/abs/1506.07975
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1103/PhysRevLett.123.260503
https://arxiv.org/abs/2012.08475
http://arxiv.org/abs/2012.08475

	Background
	Introduction
	Outline

	Quantum Information
	Basic definitions
	Qubits and harmonic-oscillator systems
	Measurements
	Time evolution

	Ion-Trap Quantum Computing
	Qubit encodings
	Trapped-ion dynamics
	Ion–laser interactions
	General Hamiltonian
	Sideband transitions

	Mølmer–Sørensen gate


	New Research
	Certification of Higher-Order Coherence
	Quantum coherence
	Interference-pattern methods
	General measurements
	Analytic threshold for 3-coherence
	Numeric evaluation of thresholds

	State-creation sequences
	Measurement-mapping sequences
	Statistics of the certifier
	Experimental realisation
	State creation
	Coherence certification

	Conclusion

	Robust Entangling Gates
	Model
	Optimisation
	Parametrisation
	Reduction of dimensionality
	Quadrature

	Results
	Outlook

	Entangling Gates With Strong Coupling
	Non-linear ion–motion interactions
	Calculating solutions
	Finding constraints
	Solving constraints
	Example solutions

	Simulation results
	Additional motional modes
	Outlook

	Conclusion


