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Strong-coupling quantum logic of trapped ions
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Essentially all known quantum gates rely on a weak-coupling approximation resulting in linear dynamics.

With the explicit example of trapped ions, we show how high-fidelity quantum gates can be achieved outside

such an approximation, and we derive readily implementable driving fields to realize gates with extremely high

fidelities for ions well outside the Lamb-Dicke regime with motional temperatures achievable by only Doppler

cooling.
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I. INTRODUCTION

Entangling quantum gates are the central element in quan-

tum information processing. After decades of experimental

effort, such gates have successfully been realized in several

physical systems including trapped ions [1–3], superconduct-

ing circuits [4], quantum dots [5], and NV centers [6]. After

a period of proof-of-principle experiments, the field now re-

quires fast quantum gates with extremely high fidelities for

the next step towards hardware that can outperform classical

devices.

Among the most advanced platforms are trapped ions [7,8].

Since ions are spatially separated due to their Coulomb re-

pulsion, there is no appreciable direct interaction between

the electronic degrees of freedom that define the qubits, and

effective interactions mediated via collective motional modes

need to be engineered in order to realize entangling gates. This

mechanism involves a change in the motional state [9] that

is absolutely essential for the implementation of the gate. It

is, however, equally essential that the electronic and motional

modes become uncorrelated at the gate time, as to do other-

wise would result in an incoherent gate operation.

There are a variety of schemes [10–13] to drive ions with

electromagnetic fields that achieve this in the Lamb-Dicke

regime of weak ion-motion interactions with the motional

modes all at low temperatures. For most of the currently

employed entangling gates in the Lamb-Dicke regime, com-

parably simple driving schemes result in gate operations that

are largely independent of the initial motional state.

Being restricted to the Lamb-Dicke regime nonetheless

imposes several challenges. The necessity of keeping the ions’

motion close to the quantum mechanical ground state imposes

stringent requirements on cooling; only a limited number of

gates can be performed between cooling cycles, which de-

creases the number of gates that can be executed within the

coherence time. Due to the weak interactions, realizations

of fast gates require strong laser driving, causing adverse

effects such as AC Stark shifts and off-resonant excitations

of undesired transitions, which lower the gate fidelity [14].

Even with perfectly cooled motion and weak interactions, the

Lamb-Dicke approximation still fails to be sufficient in the

quest for entangling gates of ever-higher fidelity [2,3], and its

corrections are now the overwhelming source of the infidelity

of current quantum gates outside the weak-coupling limit [1].

Quantum gates outside this regime thus hold the potential

to substantially advance the quality of quantum information

processing, but existing ideas require complex sequences of

intense pulses that make their experimental implementation

very challenging [15,16]. The goal of this paper is thus to

devise controls for entangling quantum gates beyond the

Lamb-Dicke approximation that can be realized with simple

driving fields.

The construction will be exemplified on the Mølmer-

Sørensen gate [10,17], but applies equally to the full range

of similar gates [18–20] that are currently used. The basic

principle of the entangling gate can be appreciated using the

level diagram in Fig. 1. In addition to carrier transitions with

no change in the motional mode, there are also sideband

transitions; in a kth-order red (blue) sideband transition, an

excitation or deexcitation of an ion is accompanied by the an-

nihilation or creation (creation or annihilation) of k phonons.

First-order blue and red sideband transitions are depicted by

solid blue and red arrows, and second-order sideband transi-

tions are depicted by dashed arrows. The gate relies on the

simultaneous driving of both the red and blue first-order side-

band transitions close to, but not exactly on, resonance. Apart

from the spurious excitations and deexcitations of phonons

that can be made to vanish at the end of the gate operation,

this results in an effective interaction between the electronic

degrees of freedom, as depicted by an orange (thick) arrow in

Fig. 1.

This is a truly coherent qubit-qubit interaction only under

the Lamb–Dicke approximation; without it, the effective in-

teraction strength becomes dependent on the initial state of

the phonon mode and a coherent gate operation can only be

ensured if this is originally a Fock state. Realistically, the

motional state will be a statistical mixture of several Fock

states, such as a thermal state, and the gate operation will

become incoherent.
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FIG. 1. Energy level diagram for two ions and one motional

mode. The electronic (qubit) levels of the ions are denoted by |↓〉 and

|↑〉, and the motional state is characterized by the phonon number n.

Driving a kth-order blue and red sideband transition simultaneously

close to resonance results in an effective qubit-qubit interaction with

coupling constant �k . Outside the Lamb-Dicke regime, this coupling

depends on the phonon number n.

As will be shown here, coherent gates outside the Lamb-

Dicke regime can be realized in terms of the suitable driving

of higher-order sideband transitions, and the driving profiles

can be obtained based on a systematic expansion in terms of

the Lamb-Dicke parameter η that characterizes the coupling

between electronic and motional degrees of freedom of the

ions.

II. GATE DESIGN

A. Driving Hamiltonian

The starting point of the present approach is the Hamil-

tonian in the interaction picture for trapped ions and one

motional mode driven with an external laser or microwave

field with time dependence f (t ) that reads [18]

H = f (t )S+ exp
[

iη(ae−iνt + a†eiνt )
]

+ H.c., (1)

where ν is the frequency of the motional mode; the Lamb-

Dicke parameter η is given by the ratio of the photon

momentum of the driving field to the phonon momentum

of the motional mode; S± =
∑

j σ
( j)
± are the collective qubit

raising and lowering operators; and a (a†) are the phonon

annihilation (creation) operators.

All the previously mentioned complications arising outside

the Lamb-Dicke regime result from the nonlinear dependence

of H on the phonon creation and annihilation operators. In

order to appreciate this, it is instructive to express the expo-

nential function in Eq. (1) as

exp
[

iη(ae−iνt + a†eiνt )
]

= e−η2/2

∞
∑

k=−∞

Dk (η)eikνt , (2)

with

Dk (η) =
∞

∑

n=0

(iη)2n+k a†n+k

(n + k)!

an

n!
for k � 0 , (3)

and D−k (η) = D
†
k
(−η). The term D0 corresponds to carrier

transitions since it preserves the phonon number, and the

terms Dk with k > 0 and k < 0 correspond to blue and red

sideband transitions of order k, respectively. In the frequently

employed Lamb-Dicke approximation, the sum in Eq. (3) is

restricted to terms that are, at most, first order in η, resulting

in a linear Hamiltonian corresponding to linear Heisenberg

equations of motion. In general, however, the qubit-phonon

coupling is nonlinear, as reflected by Eq. (3).

Most entangling gates are realized in terms of a two-photon

process comprised of a transition of both the first-order red

and blue sidebands, with effective coupling constant

�1 ∝ [D1(η), D−1(η)] = η2 − 2η4a†a + O(η6) (4)

for the entangling qubit-qubit interaction. In lowest order

(∝ η2), this is indeed independent of the initial phonon oc-

cupation, whereas the dependence on a†a at fourth and higher

orders modifies the effective process from a coherent interac-

tion between two qubits to a three-body interaction between

two qubits and the motional mode.

Driving additional blue and red sidebands of the same

order simultaneously engenders complementary resonant

two-photon processes, which contribute additional terms

�k ∝ [Dk, D−k] for k > 1 to the coupling constant. The goal

of the present approach is to combine simultaneous driving

of sufficiently many higher-order sidebands with appropri-

ate fields such that the phonon-number-dependent processes

cancel.

To achieve this, we consider driving protocols with the

generic temporal pattern

f (t ) = −i
eη2/2

η

∑

k>0

[

fk (t )e−ikνt + (−1)k f ∗
k (t )eikνt

]

. (5)

The first (second) term in this ansatz corresponds to the driv-

ing of the kth-order blue (red) sidebands, and the factors fk (t )

vary slowly in time to ensure that this driving is slightly off-

resonant. The phase factor (−1)k and the prefactor eη2/2η−1

can be understood as a convention that can be chosen at will,

as long as the factors fk (t ) are not determined yet. This par-

ticular choice of phase factors will result in a more systematic

expansion later on, and the factor eη2/2 is chosen to cancel

the first factor in Eq. (2). While these choices are mostly for

convenience, the prefactor η−1 is essential for the expansion

in powers of η and it reflects the fact that a decreasing Lamb-

Dicke parameter requires increasing amplitudes of the driving

fields in order to maintain a constant entangling interaction.

Neglecting far-off-resonant processes in the interaction

Hamiltonian of Eq. (1) with the explicit driving profile in

Eq. (5) results in the compact Hamiltonian

Hs =
1

η
Sy

∑

k

[

fk (t )Dk (η) + f ∗
k (t )D†

k
(η)

]

. (6)

B. Solving nonlinear dynamics

Inside the Lamb-Dicke regime, this reduces to the lin-

ear Mølmer-Sørensen Hamiltonian H0 = iSy( f1a† − f ∗
1 a), for

which the time evolution is given by

U0(t ) = exp
[

Sy

(

{ f1}a† − { f ∗
1 }a

)

+ i�0S2
y

]

. (7)
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The lowest-order Rabi angle �0(t ) = Im { f1{ f ∗
1 }} is specified

in terms of the shorthand notation { f } =
∫ t

0
dt1 f (t1) and its

nesting { f {g}} =
∫ t

0
dt1 f (t1)

∫ t1
0

dt2 g(t2).

In order to solve the system dynamics outside the Lamb-

Dicke regime including terms up to a high order in η, the

exact propagator U is approximated by a product Vd of time-

dependent unitaries U j as

U ≈ Vd = U0U1 · · ·Ud−1Ud . (8)

This product is constructed such that the generator of U j

is proportional to η j , except for the final factor Ud which

contains terms of order ηd and higher. The starting unitary

U0 is defined as the solution to the linearized Hamiltonian to

coincide with Eq. (7). Successive time-dependent unitaries U j

are defined by considering transformed Hamiltonians,

H j+1 = V
†
j HsV j − iV

†
j V̇ j, (9)

that contain only terms of order at least η j+1. With the solution

of the linearized problem U0, this is naturally ensured for H1.

Denoting the terms in leading order of η of H j by H̄ j , i.e.,

H̄ j ∝ η j , one can define the propagator U1 = exp(−i{H̄1}).

Since U1 solves the Schrödinger equation with Hamiltonian

H1 in leading order of η, H2 is of the order of at least η2. This

process can be iterated by defining the unitary U j entering

Eq. (8) as U j (t ) = exp(−i{H̄ j}). This definition ensures that

the subsequent Hamiltonian H j+1 defined in Eq. (9) contains

only terms of the order of at least η j+1.

These ensuing Hamiltonians are nonterminating; however,

the Baker-Campbell-Hausdorff expansion permits a series

expansion in ascending powers of η. Under the frame transfor-

mations of Eq. (9), the next Hamiltonian is a sum over nested

commutators,

H j+1 =
∞

∑

m=1

[

i{H̄ j}, · · ·
[

i{H̄ j},
︸ ︷︷ ︸

(m−1) commutators

H j −
1

m
H̄ j

]

· · ·
]

, (10)

such that each element of the sum contains only terms of

higher order than ηm j .

After d steps, one arrives at a Hamiltonian Hd ∼ ηd which

still permits an exact solution to the Schrödinger equation, but

at this step it is approximated by Ud = exp(−i{Hd}), where, in

contrast to the previous steps, this construction is not limited

to the dominant part of Hd . This approximate propagator

differs from the exact propagator by terms of order at least

η2d since the lowest-order terms that are being neglected are

bilinear in Hd .

The desired entangling interaction S2
y is contained in U0 in

Eq. (7). In addition to that, U0 also contains terms proportional

to aSy and a†Sy, corresponding to the annihilation and creation

of a phonon conditioned on the state of the qubits. A perfectly

coherent gate in lowest order in η is thus realized if { f1}
vanishes at the gate time T , and if �0(T ) coincides with the

desired Rabi angle �T . In order to realize a coherent gate to

higher order in η, it is necessary to ensure that the additional

factors U j (T ) in Eq. (8) reduce to the identity or contribute

solely to the coherent interaction between the qubits. For

general driving patterns, however, the factors U j contain pro-

cesses of the form a†paqSr
y with scalar prefactors depending

on the driving profiles fk . The requirement that each of these

prefactors must vanish at t = T defines a constraint that the

driving profiles must satisfy. Since the derivation of each con-

straint follows exactly the same pattern, we will sketch it here

with the process a†aS2
y in U2 as an illustrative example. The

corresponding prefactor is η2( 1
2
{ f2{ f ∗

2 } − f ∗
2 { f2}} − 2i�0).

The requirement that the process a†aS2
y must not contribute to

the gate thus results in the constraint Im { f2{ f ∗
2 }} = 2�0(T ) at

the gate time. In a similar fashion, all processes contributing

to the full propagator Vd (T ) to any desired order d can be

taken into account. See the Appendix for a full reproduction

of all conditions at third order, and the attached data reposi-

tory for computer-readable representations of all conditions at

both third and fourth orders, and Python code to generate the

conditions at arbitrary order [28].

III. EXAMPLE GATES

These constraints are satisfied for a broad range of driv-

ing profiles that can be selected depending on experimental

constraints, goals, and capabilities. In the following, we will

discuss two such profiles that solve the conditions to third and

fourth orders, that is considering terms up to and including η3

or η4. To third order, only two sidebands are necessary, each

driven monochromatically close to resonance with f1(t ) =
� exp(2iδt ) and f2(t ) = � exp(iδt ) for a gate time of T =
2π/δ, with � determined by the entangling condition on the

Rabi angle. For this specific driving profile, this condition

is 3η2x4 − (1 + η2)x2 + �T /π = 0, with x = �/δ, and the

following discussion is based on the smallest positive root of

this equation to minimize power usage.

The extension to fourth order requires driving the third

sideband, and the driving profiles

f1(t ) = � exp(5iδt ), f3(t ) =
√

3

5
� exp(iδt ), (11)

f2(t ) =
�
√

5

[

2 exp(2iδt ) +
7

5

�

δ
η exp(−7iδt )

]

, (12)

with bichromatic driving of the second sideband, are a valid

solution to all constraints, with � determined by

382

1875
x6 −

56

75

(

2 +
1

η2

)

x4 +
(

1 +
2

η2
+

2

η4

)

x2 =
5

πη4
�T .

(13)

The gate infidelity is strongly dependent on both the Lamb-

Dicke parameter and the initial motional excitation. It is

plotted for a fixed gate time T = 2π/δ and Rabi angle �T =
π/8 corresponding to the creation of a Bell state as a func-

tion of the Lamb-Dicke parameter in Fig. 2(a) for the three

schemes under discussion, with different starting motional

Fock states. The solutions have the dependences ∼η4, ∼η8,

and ∼η10 that are consistent with the perturbative construction

of the driving patterns. In Figs. 2(b)–2(d), this infidelity is

plotted for each scheme, respectively, for the motion in an

initial thermal state with varying mean occupation. Extremely

high fidelities can be reached for a broad range of Lamb-Dicke

parameters in Figs. 2(c) and 2(d), whereas the conventional

driving depicted in Fig. 2(b) requires a small value of the
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FIG. 2. (a) Gate infidelity as a function of Lamb-Dicke parame-

ter η for the schemes with one (purple, dark), two (blue, middle), and

three (green, light) sidebands, starting from motional pure states |0〉
(dot-dashed), |1〉 (dashed), and |2〉 (dotted). The present driving re-

duces the dependence of η from O(η4) for the standard gate to O(η8)

and O(η10) for the two- and three-sideband gates, respectively. Lines

with the exact power laws are shown in solid gray for comparison.

(b)–(d) Heat maps of the infidelity for a motional thermal state with

varying mean occupation n̄ for different values of η, using a scheme

with (b) one, (c) two, and (d) three sidebands. Contours are plotted

at infidelities of 10−3 (solid) and 10−5 (dashed).

Lamb-Dicke parameter and a low motional temperature for

a good gate fidelity.

Previous experimental work seeking fast gates has used a

Lamb-Dicke parameter of approximately 0.1 with the aver-

age motional excitation cooled to n̄ � 0.05 [1]. At this level,

outside-Lamb-Dicke effects lower-bound the single-sideband

gate infidelity to 1.9 × 10−4, whereas the additions of sec-

ond and third sidebands reduce the bound to 1.1 × 10−7 and

7 × 10−10, respectively. The same fidelity as the base gate can

be achieved by the second-order (third-order) scheme with a

Lamb-Dicke parameter up to 0.27 (0.43) or a thermal state

with average occupation n̄ � 6.6 (21). That is, the present

driving schemes would allow the realization of gates with

state-of-the-art fidelities even without sideband cooling, and

since all driving frequencies are spectrally close to the qubit

transition frequency, both schemes can readily be realized

with standard pulse-shaping equipment.

The improvements in infidelities of these two particular

driving schemes over the base gate can be better understood

through consideration of the phase-space displacement of the

motional mode during the gate operation. Figure 3 depicts

this for an initial state with the qubits in an eigenstate of Sy

and the motion in a thermal state, for conditions both inside

(top) and outside (bottom) the Lamb-Dicke regime. The left

FIG. 3. Phase-space trajectories of gates using one, two, and

three sidebands (columns), both inside the Lamb-Dicke regime (top

row) and far outside (bottom row). Contours of the Wigner function

of the motional state at times 0, T/3, 2T/3, and T are indicated by

the dashed lines, scaled down around their centroids to 25% (top) or

5% (bottom) for visibility. Time through gate is represented by the

color, ranging from purple (dark) to orange (light). A high-fidelity

gate is realized only if the initial and final Wigner functions coincide.

Outside the Lamb-Dicke regime, increased contributions from the

higher-order sidebands modify the phase-space trajectories and cause

substantial deformation of the Wigner functions. With conventional

driving (one sideband), there is thus a substantial deviation between

the initial and final states. With two sidebands, or even more with

three, however, the phase-space trajectory closes rather accurately,

and the distortion of the Wigner function vanishes to a good approx-

imation at the end of the dynamics.

column illustrates the dynamics resulting from conventional

driving of only first-order sidebands, while the central and

right columns correspond to third- and fourth-order cases.

Outside the Lamb-Dicke regime, the phase-space trajectory

(i.e., the expectation of position and momentum) does not

form a closed loop with the conventional driving scheme,

whereas the trajectories in the other two cases close nearly

perfectly, as required for coherent quantum gates.

In addition to the phase-space trajectory, a scaled-down

version of the Wigner function is depicted at thirds of the

gate time with dashed contour lines. With conventional driv-

ing (left), the contour shapes hardly change, but the present

driving schemes result in strong deformations. This is direct

evidence of the exploitation of the second- and third-order

sideband transitions, and it is exactly those nonlinear pro-

cesses that manage to correct the phase-space trajectory. Since

the Wigner function and phase-space trajectory are not drawn

to the same scale, the overlap between initial (orange, light)

and final (purple, dark) Wigner functions is substantially

larger than suggested by the figure. While the figure therefore

cannot offer a quantitative estimate of this overlap, one can

see that it becomes larger from left to right as expected, and

the corresponding gate fidelities are 71%, 89%, and 97.3%.
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IV. DISCUSSION

The technique developed here allows for precise control of

the trapped-ion system in the nonlinear regime, which has re-

mained inaccessible so far. The linear approximation imposes

a fundamental limit on the achievable fidelity in state-of-the-

art trapped-ion quantum gates, which cannot be exceeded

by improvement of the experimental control apparatus. The

present systematic method removes this limit by canceling the

undesired contributions originating from the nonlinear nature

of the interaction order by order. Even under unfavorable ex-

perimental conditions such as imperfect cooling, this scheme

leads to extremely high fidelity of quantum operations. This

work opens avenues to high-temperature quantum information

processing with trapped ions, removing the need for expensive

sideband-cooling cycles.

The generic method introduced here leads to a set of

functional constraints for a suitable driving ansatz. The

two explicitly given solutions illustrate the efficient per-

formance of the proposed technique with experimentally

standard pulses even for large values of the Lamb-Dicke pa-

rameter. However, the framework admits a broad spectrum

of different solutions that can accommodate the advantages

of other current proposals as well. The sidebands may, for

example, be driven polychromatically or with phase modu-

lation to achieve additional robustness against heating and

uncertainty in driving parameters [21–24]. The techniques

developed here thus should not be seen as an alternative

to existing control techniques, but rather as a seamless ad-

dition to the existing ion-trapping toolbox [19,20,25]. This

paper mainly focused on canceling adverse effects of the

strong-coupling limit of a nonlinear interaction; however, the

strategy can equally be employed to exploit advantages of

this regime, for example to implement fast or multiqubit

gates.

More broadly, the proposed approach is a powerful tool

to devise driving protocols starting from a variety of initial

Hamiltonians; the general framework is exemplified here

for the Mølmer-Sørensen scheme, but readily applies to any

quantum gate that is based on a linearized interaction. It

is thus by no means limited to trapped ions, and can find

application in any system for which fundamentally nonlinear

interactions are approximated to their leading order. One

prominent example is given by superconducting qubits

[26], which are two-level approximations of anharmonic

oscillators, and leakage out of the qubit subspace poses severe

restrictions on achievable fidelities.

Similarly, the interactions between light and mechanical

oscillators in cavity optomechanics [27] are fundamentally

nonlinear; they can be approximated as linear under strong

driving, with nonlinearities becoming more relevant with de-

creasing driving amplitude. As it enables control over a broad

range of nonlinearities, the present framework is not limited

to the realization of quantum gates, but can also be applied

for the design of high-precision sensors or other quantum-

technological devices.
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APPENDIX: EXPLICIT FUNCTIONAL CONDITIONS FOR THIRD ORDER

The desired entangling interaction that is accurate up to and including terms of order η3 can be realized by driving only two

sidebands with amplitudes f1 and f2. In order to ease notation, the conditions that need to be satisfied are expressed in terms of

the shorthand notations

{ f } =
∫ t

0

dt1 f (t1), (A1)

where nesting implies iteration of the integration, i.e.,

{ f1{ f2}} =
∫ t

0

dt1 f1(t1)

∫ t1

0

dt2 f2(t2) (A2)

and so on, and

λ(x, y) = x{y} − y{x} . (A3)

The entangling condition at the gate time t = T is

�T = Im

{

f1{ f ∗
1 } +

1

2
η2 f2{ f ∗

2 } − 4η2{ f1}
(

f ∗
2

{

{ f ∗
1 } f2

}

+ f1{ f ∗
1 }2

)
}

. (A4)

In addition to Eq. (A4), all the following quantities also need to vanish at t = T :

{ f1}; { f2};
{

{ f1} f ∗
2

}

;
{

f1{ f1}
}

; (A5)

{

f1{ f ∗
2 }

}

; Re
{

{ f1}{ f1} f ∗
2

}

;
{

3 f1{ f2} + { f1} f2

}

; (A6)
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{

{ f ∗
1 }

(

2 f ∗
1 { f1} + f2{ f ∗

2 } − f1{ f ∗
1 }

)

− f ∗
2

{

{ f ∗
1 } f2

}
}

; (A7)

{

2{ f2}
[

3λ( f1, f ∗
1 ) − λ( f2, f ∗

2 )
]

+ 3 f1

{

{ f ∗
1 } f2

}

+ 3{ f1}{ f ∗
1 } f2

}

; (A8)

{

12{ f ∗
1 } Re

[

f1

{

{ f1}{ f ∗
2 }

}]

+ 6 f1{ f1}{ f ∗
1 }{ f ∗

2 } − 4 f2{ f ∗
2 }

{

{ f1} f ∗
2

}

− 3{ f1}2
(

{ f ∗
1 } f ∗

2 + f ∗
1 { f ∗

2 }
)
}

+
{

2{ f1} f ∗
2 { f2}{ f ∗

2 } − { f ∗
1 }3{ f2} − 2

{

{ f1} f ∗
2

}(

3 f ∗
1 { f1} − f ∗

2 { f2}
)
}

; (A9)

Re
{

4
{

{ f1} f ∗
2

}
[

{ f1}
(

6 f1{ f ∗
1 } − 3 f ∗

1 { f1} + 2 f ∗
2 { f2}

)

− 2 f2

{

{ f1} f ∗
2

}
]

− 4{ f1}3{ f ∗
1 } f ∗

2 + 3 f1{ f1}{ f ∗
2 }

}

; (A10)

{2λ( f1, f ∗
1 ) − λ( f2, f ∗

2 )}. (A11)

All quantities listed in Eqs. (A5) to (A10) are satisfied by the driving fields specified in the main article because they are

monochromatic with frequencies given by δ and 2δ. Equation (A11) is satisfied because, in addition to this, f1(t ) and f2(t ) have

the same magnitude.
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